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1 Introduction

The complete tree-level S-matrix of a large variety of field theories of massless particles are

now known (or conjectured) to have a description in terms of contour integrals over M0,n,

the moduli space of n-punctured Riemann sphere [1–13]. Some of these theories are Yang-

Mills, Einstein gravity, Dirac-Born-Infeld, and the U(N) non-linear sigma model [3, 12].

The new formulas for the scattering of n particles are given as a sum over multidimensional

residues [14] on M0,n.

In addition, many algorithms have been created in order to compute these kind of

contour integrals [15–25], as well as much progress have been done at loop level [7, 26–35].

Denoting the position of n punctures on a sphere by {z1, z2, . . . zn} and using PSL(2,C)

to fix three of them, say z1, z2, z3, there is a rational map from Cn−3 → Cn−3 which is a

function of the space of kinematic invariants for the scattering of n massless particles

(k2
a = 0), sab = ka · kb,

Ea(z) =

n∑
b=1,b 6=a

sab
za − zb

, for a ∈ {1, 2, . . . , n}, (1.1)

with a ∈ {4, 5, . . . , n}.
Using this map scattering amplitudes are defined as the sum over the residues of

Mn =

∫
dn−3z

|1, 2, 3|2 H(z)

E4(z)E5(z) · · ·En(z)
. (1.2)

over all the zeroes of the map {E4, E5, . . . , En}. Here |1, 2, 3| = (z1 − z2)(z2 − z3)(z3 − z1)

and H(z) is a rational function that depends on the theory under consideration. The

equations defining the zeroes, Ea = 0, are known as the scattering equations [36–44]. In

section 2 we will give a short review about this ideas.

The representation (1.2) of scattering amplitudes makes many properties manifest.

Some of them are gauge invariance, soft limits, BCJ relations and the existence of KLT

formulas [17, 45–55]. The drawback is that integrals of the form (1.2) require the solution

of polynomial equations whose degree increases with the number of particles.

In this paper we reformulate the formula for scattering amplitudes in terms of a double

cover of the punctured sphere. More precisely, we consider a sphere as a curve in CP 2

defined by

y2 = σ2 − Λ2, (1.3)

where Λ is a non zero constant parameter. Clearly, the curve is invariant under a simulta-

neous scaling of the coordinates (y, σ,Λ). The new formulation is schematically given by

Mn =
1

Vol(PSL(2,C))

∫ n∏
a=1

(
(ya dya)∏n

a=1(y2
a − σ2

a + Λ2)

) n∏
b=1

dσb H(σ, y,Λ)

Eb(σ, y,Λ)
. (1.4)

Integration over both residues of the curve implements the sums over choices of branches.

– 2 –



J
H
E
P
0
6
(
2
0
1
6
)
1
0
1

In the double cover description each puncture is specified by a pair of complex numbers

(σa, ya). The value of ya indicates the branch where the puncture is located. The new form

of the components of the map Ea is

Ea(σ, y,Λ) =

n∑
b=1,b 6=a

1

2

(
yb
ya

+ 1

)
sab

σa − σb
. (1.5)

This form is very easy to motivate and it is done in section 3.

The differential form being integrated in the double cover version of the formula for

Mn is invariant under the global rescaling inherited from CP 2. This C∗ group can be

promoted to a full redundancy of the description introducing the scale measure

1

vol(C∗)
dΛ

Λ
, (1.6)

where the Λ factor is proportional to the square root of the discriminant of the quadratic

curve in (1.3), ∆ = 4Λ2. The C∗ action is non-trivial on the puncture locations, this means

that one can combine the new C∗ action with the PSL(2,C) group of the sphere and use

it to fix the σ coordinate of four punctures. Doing so leaves Λ as an integration variable

to be fixed by the scattering equations. This is done in section 4.

In section 5 we show that the global residue theorem can be used to replace one of the

components of the map, say En, by Λ. As it turns out the residue theorem only picks up

poles at Λ = 0 and at Λ =∞ and both are identical. At Λ = 0 the branch cut connecting

the two branches of the double cover closes and the integrals separates into sectors. Each

sector is determined by the distribution of the punctures between the two branches. The

amplitude then becomes schematically

Mn =
∑
U∪D
Moff−shell

U

1

P 2
U

Moff−shell
D . (1.7)

where the sum is over possible distributions of punctures andMoff−shell refers to amplitudes

where one particle, corresponding to the puncture created by the closing of the branch cut

is off-shell.

We apply this procedure to more general integrals over the moduli space which appear

as parts of physical amplitudes in their CHY representation. In these more general cases,

when the integrand has at most double poles on the boundary of the moduli space Mn,0

then the propagator is a standard Feynman propagator. An example of an integral with

at most double poles is ∫
dnz

1

E1(z)E2(z) · · ·En(z)

1

(123 · · ·n)2
(1.8)

where

(123 · · ·n) := (z1 − z2)(z2 − z3) · · · (zn − z1). (1.9)

This integral is known to give the sum over all Feynman diagrams computing a partial

amplitude in a cubic scalar theory in the bi-adjoint representation of U(N) × U(M). It-

erating the procedure gives rise to a novel set of diagrams where the buliding blocks are

four-particle amplitudes and propagators.
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When the integrand has higher order poles on the moduli space one finds generalized

propagators which are made from higher powers of kinematic invariant. One example,

explicitly compute in section 6, is a six-particle integral∫
d6z

1

E1(z)E2(z) · · ·E6(z)

1

(1234)2(56)2
(1.10)

with (56) = (z5 − z6)(z6 − z5) consistent with the definition (1.9). This integral has poles

of the form 1/s3
56.

A very familiar way of understanding this process is by analogy with the Stukelberg

procedure for taking massless limits of massive vector bosons [56]. The mass parameter is

played by the kinematic invariant controlling the factorization limit while the Stukelberg

field is played by the Λ parameter. All this process is shown in section 6, where we formulate

a new algorithm and in section 7 we give three non trivial examples.

In section 8 we compare our method with the rules given in [18] by Baadsgaard et al. We

also generalize the new algorithm to non trivial numerators and we give a simple example.

Finally, we end in section 9 with discussions.

2 Preliminaries

In this section we review the basic CHY construction [1–3] and show some examples that

motivate the double-cover construction.

2.1 CHY construction

Consider the scattering of n massless particles. The scattering data is determined in terms

of a set of n momentum vectors {kµ1 , k
µ
2 , . . . , k

µ
n} and n wave functions {εµ1 , ε

µ
2 , . . . , ε

µ
n}. Here

we take the wave functions to be polarization vectors as higher spin wave functions, e.g.

for gravitons, can be constructed using tensor products. In a slightly different terminology

from the original CHY construction, one introduces n rational functions of the puncture

locations, za, defined by [1, 39]

Ea =

n∑
b=1,b 6=a

sab
za − zb

. (2.1)

It is easy to show that three linear combinations vanish

n∑
a=1

zma Ea = 0 for m ∈ {0, 1, 2}. (2.2)

Recalling that different configurations of punctures on a CP 1 are to be identified if

they differ by a PSL(2,C) transformation. This means that the location of three punctures

can be fixed. It is possible to show that for any rational function H(z) which transforms as

H(z)→ H(z)
n∏
a=1

(γza + δ)4, when za →
αza + β

γza + δ
and αδ − βγ = 1, (2.3)
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the contour integral [1] ∫ n∏
a=1,a 6={i,j,k}

dza
|ijk|z|pqr|z∏n

c=1,c 6={p,q,r}Ec(z)
H(z) (2.4)

that computes one of the local residues at a zero of the map Cn−3 → Cn−3 is independent

of the choice of fixed punctures {zi, zj , zk} and of equations eliminated {Ep, Eq, Er} to con-

struct the map. In this formula |ijk| stands for the Vandermonde determinant of zi, zj , zk.

One way to see that this is the case is to realize that the generators of PSL(2,C) are

L1 =

n∑
a=1

∂za , L0 =

n∑
a=1

za∂za , L−1 =

n∑
a=1

z2
a∂za . (2.5)

Treating the PSL(2,C) as a redundance of the integral and using a gauge fixing procedure

one can check that the Fadeev-Popov determinant is indeed

|ijk|z =

∣∣∣∣∣∣∣
1 zi z2

i

1 zj z2
j

1 zk z2
k

∣∣∣∣∣∣∣ . (2.6)

2.2 Examples

The CHY representation of many theories are known (or are conjectured). In this subsec-

tion we review some of them in order to motivate the constructions in this paper.

Let us start with Einstein gravity [1, 2]. The integrand H is computed as the reduced

determinant of a matrix a 2n× 2n antisymmetric matrix

Ψ =

(
A −CT

C B

)
, (2.7)

where A, B and C are n× n matrices. The first two matrices have components

Aab =


ka · kb
za − zb

a 6= b,

0 a = b,
Bab =


εa · εb
za − zb

a 6= b,

0 a = b,
(2.8)

while the third is given by

Cab =


εa · kb
za − zb

a 6= b,

−
n∑

c=1;c 6=a

εa · kc
za − zc

a = b.
(2.9)

This matrix depends on the momenta kµa and on polarization vectors εµa .

The diagonal components of the C matrix can be written in a manifestly PSL(2,C)

covariant way by choosing a momentum vector, say kn if a 6= n, and eliminating it using

momentum conservation

Caa = −
n−1∑

b=1,b 6=a
εa · kc

(zn − zc)
(za − zc)(za − zn)

. (2.10)
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The integrand is given by

Hgravity(z) = det′Ψ =
1

(zi − zj)2
det Ψij

ij , (2.11)

where Ψij
ij is the (n− 2)× (n− 2) matrix obtained from Ψ by removing the rows (i, j) and

the columns (i, j).

The second example is that of the scattering of gluons in a U(N) Yang-Mills theory [1,

2]. The coefficient of the trace Tr(T a1T a2 · · ·T an) is computed by the integrand

HYM(z) =
1

(123 · · ·n)
Pf ′Ψ, (2.12)

where Pf ′Ψ = (zi − zj)−1PfΨij
ij and (123 · · ·n) = (z1 − z2)(z2 − z3) · · · (zn − z1).

The third example is that of a scalar theory in the bi-adjoint representation of U(N)×
U(Ñ) [2]. The coefficient of the trace Tr(T a1T a2 · · ·T an)Tr(T̃ aw(1) T̃ aw(2) · · · T̃ aw(n)) with w

some permutation of labels, is given by

Hscalar(z) =
1

(123 · · ·n)
× 1

(w(1)w(2)w(3) · · ·w(n))
. (2.13)

The last two examples are also purely scalar theories but with derivative interac-

tions [3, 11].

The fourth example is a special Galileon theory (sGal) that possesses more non-linearly

realized symmetries than a generic Galileon. Amplitudes in this theory are computed using

HsGal(z) =
(
det′A

)2
, (2.14)

where det′A = (zi − zj)−2detAijij .

The fifth and final example is the U(N) non-linear sigma model. The term proportional

to the trace Tr(T a1T a2 · · ·T an) is computed by

HNLSM(z) =
1

(123 · · ·n)
det′A, (2.15)

In order to illustrate the kind of integrals we are interested in performing let us consider

det′A for four particles,

det′A4 =
1

(z1 − z2)2

∣∣∣∣∣ 0 s34
z3−z4

s34
z4−z3 0

∣∣∣∣∣ . (2.16)

This means that the integrands of the Galileon and NLSM are

HsGal
4 = s4

34 ×
1

(z1 − z2)4(z3 − z4)4
, HNLSM

4 = s2
34 ×

1

(1234)

1

(z1 − z2)2(z3 − z4)2
. (2.17)
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2.3 Singularities on M0,n

The examples given above make it clear that a variety of integrands H(z) can appear. One

way to classify them is by the kind of singularities they have as different boundaries on the

moduli space of a punctured sphere are approached. The largest codimension singularities

are when two punctures approach each other. Consider for example the integrands for four

particles [2, 3, 11]

Hφ3

4 ∼
1

(1234)2
, HNLSM

4 ∼ 1

(1234)

1

(z1 − z2)2(z3 − z4)2
, HsGal

4 ∼ 1

(z1 − z2)4(z3 − z4)4
.

Clearly, the first integrand has double poles as any two consecutive punctures approach

each other za → za+1 and no other poles. The second integrand has a triple poles when

z1 → z2 and when z3 → z4 and simple poles when z2 → z3 and when z4 → z1. Finally, the

last integrand only has fourth order poles when z1 → z2 and when z3 → z4. It is easy to

show that the order of the pole is related to the order of the propagator associated to the

coincident punctures. If the integrand as a (m + 1)th order pole when za → zb then the

integral has a pole of the form 1/smab.

In the rest of this paper we develop a double cover formulation which is tailored for

exploiting the behavior of integrands near boundaries of the moduli space. This method

not only becomes a powerful tool in the evaluation of integrals but it also makes physical

properties manifest such as crossing and factorization.

3 Double-cover formulation

We consider a sphere as a curve in CP 2 defined by [14]

y2 = σ2 − Λ2. (3.1)

We call this curve Σ and it can be interpreted as two sheets joined by a branch cut. We

take σ as the coordinate on a sheet and y as the variable determining the branch. Λ is

taken to be a constant parameter that controls the opening of the branch cut joining the

branch points σ = −Λ and σ = Λ.

The location of n-punctures on Σ is given by n pairs {(σa, ya)}. We would like to find

formulation of the maps Ea defining the scattering equations for this curve. Clearly, Ea
must have a simple pole when puncture a coincides with puncture b. On Σ, it is not enough

to have σa → σb but we also need ya → yb, i.e., they must be on the same branch. When

σa → σb one can have either ya → yb or ya → −yb. So we need a projector, P
(a)
b , that gives

one in the former and zero in the latter. One choice is

P
(a)
b =

1

2

(
yb
ya

+ 1

)
. (3.2)

This turns out to be the correct choice and one has

Ea(σ, y) =
n∑

b=1,b 6=a

1

2

(
yb
ya

+ 1

)
sab

σa − σb
. (3.3)
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One important condition the equations have to satisfy is that they must be covariant under

the exchange of σ and y (with Λ→ iΛ) which is a symmetry of the curve Σ. It is easy to

check that on the support of y2
b = σ2

b − Λ2, the function yaEa is invariant.

Having found the new version of the maps Ea which give rise to the scattering equa-

tions, the next step is to translate the rational function H(z) which defines the theory under

consideration. All such functions can be decomposed as linear combinations of functions

of the form [17]

H(z) =
1

(α(1)α(2) · · ·α(n))(γ(1)γ(2) · · · γ(n))
f(rijkl), (3.4)

where (α(1)α(2) · · ·α(n)) and (γ(1)γ(2) · · · γ(n)) are Parke-Taylor factors with ordering α

and γ (see (1.9) for the Parke-Taylor factor definition [57]). f is a rational function of rijkl
which are general cross ratios, i.e.,

rijkl ≡
zij zkl
zil zjk

, (3.5)

where we have introduced a convenient shorthand notation

zab ≡ za − zb (σab ≡ σa − σb). (3.6)

In order to map H(z) to H(σ, y), we define any combinations of factors of the form

(za1 − za2)(za2 − za3) · · · (zam−1 − zam)(zam − za1) (3.7)

as a chain (a1 a2 · · · am−1 am) of length m. Chains are taken to have lengths 2 ≤ m ≤ n.

A chain of length 2 is given by

(a1 a2) = (za1 − za2)(za2 − za1). (3.8)

It is straightforward to check

rijkl ≡
zij zkl
zil zjk

=
zijzjlzlkzki
zkjzjlzlizik

=
(ijlk)

(ikjl)
. (3.9)

Now we propose to use the following replacement into the chain so as to construct the

integrand H(σ, y),
1

zab
7→ τa:b ≡

1

2

(
ya + yb + σab

ya

)
1

σab
. (3.10)

Note that while the left hand side is antisymmetric in the a and b labels the right hand

side is not and hence the notation τa:b. This fact becomes irrelevant when the substitution

is made into chains and hence the importance of the appearance of them in the integrands.

So, we complete the map H(z)→ H(σ, y) by

H(σ, y) = (τα(1):α(2) · · · τα(n):α(1))(τγ(1):γ(2) · · · τγ(n):γ(1))f

(
τi:kτk:jτj:lτl:i
τi:jτj:lτl:kτk:i

)
. (3.11)
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In addition one can check, in a simple way, the chain property

(a1 a2 · · · am−1 am) = (−1)m(am am−1 · · · a2a1), (3.12)

(τa1:a2 · · · τam−1:am τam:a1) = (−1)m(τam:am−1 τam−1:am−2 · · · τa2:a1 τa1:am), (3.13)

and the inverse map works in the same way, τa:b → 1
zab

.

Moreover, it is straightforward to check the scattering equations can be written as

Ea(σ, y) =

n∑
b 6=a

sab τa:b =
1

ya

n∑
b 6=a

sab τ̃a:b =
1

ya
Ẽa(σ, y), (3.14)

where we have denoted τ̃a:b and Ẽa as

τ̃a:b =
ya + yb + σab

2σab
, Ẽa =

n∑
b 6=a

sab τ̃a:b. (3.15)

It is not obvious how chains appear in integrands that are computed using the Pfaffian

or the determinant of the matrices Ψ of A.

3.1 Redundancies

Next we move to the discussion of the redundancies and how to gauge fix them. This

subsection is only the first part of the discussion in which we show how to perform the

standard gauge fixings. In the second part, presented in section 4, we perform a different

gauge fixing which allow us to use residue theorems to break up contour integrals into

integrals with smaller number of punctures.

We consider the following integral

I =
1

Vol(PSL(2,C))

∫ n∏
a=1

dσa (ya dya)

(y2
a − σ2

a + Λ2)
× H(σ, y)∏n

b=1Eb(σ, y)
(3.16)

where Λ is a non-zero constant parameter and H(σ, y) is a general rational function as

in (3.11). The factor Vol(PSL(2,C)) in the integral is there only as a reminder that the

integral has a redundancy that has to be gauge fixed. The PSL(2,C) action is generated

by the vectors (on the support of the algebraic curve y2
a = σ2

a − Λ2, a = 1, · · ·n)

L±1 =

n∑
a=1

1

Λ
ya(σa ∓ ya)∂a, L0 =

n∑
a=1

ya∂a, (3.17)

where ∂a ≡ ∂/∂σa and they satisfy the algebra

[L±1, L0] = ±L±1, [L1, L−1] = 2L0. (3.18)

The covariance of the Ea maps under these transformations imply that there are three

linear combinations among them

n∑
a=1

yaEa = 0 ,
n∑
a=1

σa yaEa = 0 ,
n∑
a=1

y2
a Ea = 0 . (3.19)

– 9 –
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In order to define local residues in (3.16), one must remove three of the elements of the

map (σ1, σ2, . . . , σn) 7→ (E1, E2, . . . , En) from Cn 7→ Cn. This is welcome as one can use the

PSL(2,C) group to fix the location of three σa variables. Using the standard Fadeev-Popov

procedure one has

I =
1

23

∫
Γ

∏
a 6=i,j,k

dσa

n∏
b=1

(yb dyb)

(y2
b − σ2

b + Λ2)
× |i, j, k||p, q, r|∏

d 6=p,q,r Ed
H(σ, y), (3.20)

where the Fadeev-Popov determinants are given by

|p, q, r| = 1

Λ2

∣∣∣∣∣∣∣
yp yp(σp + yp) yp(σp − yp)
yq yq(σq + yq) yq(σq − yq)
yr yr(σr + yr) yr(σr − yr)

∣∣∣∣∣∣∣ =
2 ypyqyr

Λ2

∣∣∣∣∣∣∣
1 yp σp
1 yq σq
1 yr σr

∣∣∣∣∣∣∣ , (3.21)

likewise for |i, j, k| and Γ is the integration cycle defined by the solutions of the 2n − 3

equations

y2
b − σ2

b + Λ2 = 0, b = 1, . . . n, (3.22)

Ed = 0, with d = 1, . . . n and d 6= p, q, r. (3.23)

The 23 factor appears when the PSL(2,C) symmetry is fixed and the (Z2)3 symmetry

(σi → −σi, σj → −σj , σk → −σk) is broken.

Note that the values of σi, σj and σk have been fixed but their branches do not, i.e.

yi, yj and yk can still take any of the solutions to y2
b − σ2

b + Λ2 = 0.

3.1.1 Promoting Λ to variable

In the previous prescription, (3.20), Λ is a constant parameter. In this section we show

how to introduce Λ as a variable.

It is straightforward to check that the integral in (3.16) is invariant by the scale trans-

formation

(σa, ya,Λ)→ ρ(σa, ya,Λ), ρ ∈ C∗ and a = 1, . . . , n, (3.24)

Note that the PSL(2,C) measure
dσidσjdσk
|i, j, k|

, (3.25)

is also invariant by the scale transformation in (3.24).

In order to promote the Λ parameter to a variable we introduce the scale invariant

measure dΛ
Λ . Thus, the new measure

dΛ

Λ

dσidσjdσk
|i, j, k|

, (3.26)

is also scale and PSL(2,C) invariant, i.e GL(2,C) invariant. Clearly, the generators of this

GL(2,C) symmetry are given by the elements {L0, L−1, L1} and the scale generator

D =
n∑
a=1

σa∂a + Λ∂Λ. (3.27)
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Its algebra is given by

[L±1, L0] = ±L±1, [L1, L−1] = 2L0, [D,Lm] = 0, m ∈ {−1, 0, 1}, (3.28)

on the support of the algebraic curve y2
a = σ2

a − Λ2.

Now, note that the denominator in (3.25) can be written as the following determinant

Λ |i, j, k| = 1

Λ2

∣∣∣∣∣∣∣∣∣
yi yi(σi + yi) yi(σi − yi) σi
yj yj(σj + yj) yj(σj − yj) σj
yk yk(σk + yk) yk(σk − yk) σk
0 0 0 Λ

∣∣∣∣∣∣∣∣∣ ≡ ∆FP(ijk; Λ). (3.29)

This determinant is just the Fadeev-Popov determinant for the gauge fixing of the three

punctures (σi, σj , σk) and the branch cut variable Λ.

Finally, we can rewrite the (3.16) prescription as

I =
1

Vol(GL(2,C))

∫
dΛ

Λ

∫
dnσ

n∏
b=1

(yb dyb)

(y2
b − σ2

b + Λ2)
× H(σ, y)∏n

d=1Ed
. (3.30)

Fixing the {Ep, Eq, Er} scattering equations , the (σi, σj , σk) punctures and the Λ branch

cut variable one obtains

I =
1

23

∫
Γ

∏
a 6=i,j,k

dσa

n∏
b=1

(yb dyb)

(y2
b − σ2

b + Λ2)
× ∆FP(ijk; Λ) |p, q, r|

Λ
× H(σ, y)∏

d 6=p,q,r Ed
, (3.31)

which is the same expression as in (3.20).

3.2 Equivalence with the CHY construction

The idea of this section is to show how the (3.16) prescription is in fact equivalent to the

original CHY approach.

Let us define a map from the double-cover version of the sphere into a single cover of

CP1. This should take us back to the original CHY construction. Such a map is very well

known and it is given by

σa =
Λ

2

(
za +

1

za

)
, (3.32)

where Λ 6= {0,∞} is a constant and za are the coordinates on CP 1 (CHY coordinates).

The first observation is that if all the punctures are located on the same branch, say the

upper sheet, i.e. ya = +
√
σ2
a − Λ2, then

τa:b =
1

2

(
ya + yb + σab

ya

)
1

σab
=

(
2

Λ

)
z2
a

(z2
a − 1)

× 1

zab
. (3.33)

In this expression it is easy to see that the lack of antisymmetry in the labels translate into

an overall factor in the za variables. Also it is simple to show

dσa =

(
Λ

2

)
(z2
a − 1)

z2
a

dza, (3.34)
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which means that
1

2

(
ya + yb + σab

ya

)
dσa
σab

=
dza
zab

. (3.35)

This is indeed the natural differential form on Σ with simple poles at (σa, ya) = (σb, yb)

and at σa =∞ with residues 1 and −1 respectively.

Therefore, it is straightforward to conclude

H(σ, y) =

(
2

Λ

)2n
(

n∏
a=1

z2
a

z2
a − 1

)2

H(z) (3.36)

Ea(σ, y) =

n∑
i 6=a

sai τa:i =

(
2

Λ

)(
z2
a

z2
a − 1

) n∑
i 6=a

sai
zai

=

(
2

Λ

)(
z2
a

z2
a − 1

)
Ea(z), (3.37)

where H(z) is as in (3.4).

Carrying out the integration over the ya variables on the contour given by the solutions

ya = +
√
σ2
a − Λ2 and performing the map (3.32), then (3.16) becomes

1

Vol(PSL(2,C))

∫ n∏
a=1

(ya dya)

(y2
a − σ2

a + Λ2)

(
dnσ

H(σ, y)∏n
b=1Eb(σ, y)

)∣∣∣∣∣
ya=+

√
σ2
a−Λ2

(3.38)

=

(
1

2n

)
1

Vol(PSL(2,C))

∫ n∏
a=1

dza
H(z)∏n
b=1Eb(z)

,

where the 1
2n factor comes from the integral∫ n∏

a=1

(ya dya)

(y2
a − σ2

a + Λ2)

∣∣∣∣∣
ya=+

√
σ2
a−Λ2

=
1

2n
. (3.39)

Computing the integral over all possible configurations, this means the 2n way of choos-

ing (y1 = ±
√
σ2

1 − Λ2, . . . , yn = ±
√
σ2
n − Λ2), and performing the map (3.32), one obtains

1

Vol(PSL(2,C))

∫ n∏
a=1

(ya dya)

(y2
a − σ2

a + Λ2)

(
dnσ

H(σ, y)∏n
b=1Eb(σ, y)

)
(3.40)

=
1

Vol(PSL(2,C))

∫ n∏
a=1

dza
H(z)∏n
b=1Eb(z)

.

This result agrees with the original CHY formula.

4 New gauge fixing

In this section we find that by using the full GL(2) redundancy one can gauge fix the

location of four punctures, modulo branches. Thus, promoting Λ to a variable to be fixed

by the scattering equations, one has the possibility of using a global residue theorem [14]

that leads to a new diagrammatic expansion of general amplitudes. Moreover, the residue

theorem allows the analytic evaluation of integrals with rational functions whose answers

have non-local poles and thus are hard to obtain by other means.
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4.1 New gauge fixing

Let us start by reviewing the generations of the GL(2,C) redundancy, as we did in (3.17)

in section 3,

L±1 =

n∑
a=1

1

Λ
ya(σa ∓ ya)∂a, L0 =

n∑
a=1

ya∂a, D =

n∑
a=1

σa∂a + Λ∂Λ, (4.1)

where y2
a = σ2

a − Λ2. Since all four vectors act on σ’s one can use them to fix four of the

punctures’ σ. For simplicity of notation let us assume that they are σ1, σ2, σ3 and σ4. The

Fadeev-Popov jacobian, ∆FP, is now

∆FP(1234) =
1

Λ2
det


y1 y1(σ1 + y1) y1(σ1 − y1) σ1

y2 y2(σ2 + y2) y2(σ2 − y2) σ2

y3 y3(σ3 + y3) y3(σ3 − y3) σ3

y4 y4(σ4 + y4) y4(σ4 − y4) σ4

 . (4.2)

In addition to this one still has to remove three elements from the map {E1, E2, . . . , En}.
This procedure is not affected by the new gauge choice and the formula used in (3.20) is

still valid. Putting all together and removing, without loss of generality, the scattering

equations E1, E2 and E3 we arrive at the new formula

I =
1

23

∫
Γ

dΛ

Λ

n∏
a=5

dσa

n∏
b=1

(yb dyb)

(y2
b − σ2

b + Λ2)
× ∆FP(1234) |1, 2, 3|∏n

d=4Ed
H(σ, y), (4.3)

where Γ is the integration cycle defines as in (3.22), given by the equations

y2
b − σ2

b + Λ2 = 0, b = 1, . . . n, (4.4)

Ed = 0, with d = 4, . . . n,

for the 2n− 3 variables (Λ, σ5, . . . , σn, y1, y2, . . . , yn).

It is interesting to note that the opening of the branch cut connecting the two branches

(sheets) becomes a function of the kinematic invariants ka · kb. This means that as we

move in the space of kinematic invariants the branch cut also moves. This is what makes

factorization and crossing natural properties to address using this formulation.

5 Residue theorem and diagrammatic expansion

The equations obtained at the end of the previous section are polynomial equations of

increasing degree as the number of particles increases. In fact, the equations (4.4) lead

to higher degree polynomials than the original CHY scattering equations. This seems to

be an obstacle. However, using a residue theorem we will effectively replace one of the

Ea = 0 equations by the equation Λ = 0. This might come as a surprise as closing the

cut is intuitively related to a factorization limit. Instead, what we will see is that once

the cut closes a new puncture appears that represents an off-shell particle. The sum over

solutions to the equations y2
b = σ2

b − Λ2 give rise to yb = ±σb and determine the branch

– 13 –
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location of the bth-puncture. For a given distribution of particles, say a subset U (L) is on

the upper (lower) branch, the equation Ea that was eliminated gives rise to the propagator

1/P 2
U where PU is the sum over the momenta of all external particles on the upper branch.

In this way, the integral given in (4.3)

I =
1

23

∫
Γ

dΛ

Λ

n∏
a=5

dσa

n∏
b=1

(yb dyb)

(y2
b − σ2

b + Λ2)
× ∆FP(1234) |1, 2, 3|∏n

d=4Ed(σ, y)
H(σ, y) (5.1)

becomes a sum of products of contour integrals with smaller number of particles. By

iterating the process we find a diagrammatic description. The most important outcome is

that at each step in the iteration process the degree of the scattering equation is lowered

and analytic evaluations become possible.

5.1 Residue theorem

Following the similar ideas as in section 3.2 les us consider the general integral

I =
1

Vol(GL(2,C))

∫
γ
dΛ

(
n∏
b=1

dyb
(y2
b − σ2

b + Λ2)

)(
n∏
a=1

dσa

Ẽa(σ, y)

)
H(σ, y)

∏n
c=1 y

2
c

Λ
, (5.2)

where γ is the contour defined by the equations

y2
a − σ2

a + Λ2 = 0, Ẽa(σ, y) =
∑
b 6=a

ka · kb
σab

(yb + ya) = 0, for a ∈ {1, 2, . . . , n}, (5.3)

and H(σ, y)
∏n
c=1 y

2
c/Λ is the integrand. Clearly there are more integration variables than

contours, nevertheless, when the GL(2,C) symmetry is fixed then the number of integration

variables becomes equal to the contour cycles.

Note that (5.2) depends over the Λ variable by the expression∫
dΛ∏n

b=1(y2
b − σ2

b + Λ2)
× 1

Λ
, (5.4)

where
∏n
b=1(y2

b − σ2
b + Λ2) defines the integration cycle. Naively, using the global residue

theorem, it is straightforward to see that the previous expression can be written as∫
dΛ∏n

b=1(y2
b − σ2

b + Λ2)
× 1

Λ
= −

∫
dΛ

Λ
∏n
b 6=l(y

2
b − σ2

b + Λ2)
× 1

y2
l − σ2

l + Λ2
, (5.5)

where Λ
∏n
b 6=l(y

2
b − σ2

b + Λ2) defines the new contour and 1/(y2
l − σ2

l + Λ2) becomes part

of the integrand.

Nevertheless, in order to apply the global residue theorem one must also verify if the

point at infinity is a pole. One says that the (5.2) integral has a pole at infinity if and only

if [14]

deg(g) > (d1 + · · ·+ d2n)− ((2n+ 1) + 1), (5.6)

where g(σ, y,Λ) is the integrand

g(σ, y,Λ) =
H(σ, y)

∏n
c=1 y

2
c

Λ
⇒ deg(g) = −1, (5.7)
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d1 + · · ·+d2n is sum over all degrees of the polynomials that define the integration contour,

i.e.

d1 + · · ·+ d2n = deg

(
n∏
b=1

(y2
b − σ2

b + Λ2) Ẽb

)
= 2n (5.8)

and 2n+1 is the number of integration variables, i.e. (Λ, σ1, . . . , σn, y1, . . . , yn). Clearly (5.2)

has a pole at infinity and it must be integrated when the global residue theorem is per-

formed.

Since the integrand in (5.2) is not well defined when Λ = 0, then this implies that

the (5.2) integrand is given on the Λ 6= 0 chart . Thus, so as to explore the pole at infinity

we consider the following transformation

Λ → Λ′ =
1

Λ
, yi → y′i =

yi
Λ2
, σi → σ′i =

σi
Λ2
. (5.9)

Under this transformation (5.2) becomes invariant, i.e.

I =
1

Vol(GL(2,C))

∫
γ′
dΛ′

(
n∏
b=1

dy′b
(y′ 2b − σ′ 2b + Λ′ 2)

)(
n∏
a=1

dσ′a
Ẽa(σ′, y′)

)
H(σ′, y′)

∏n
c=1 y

′ 2
c

Λ′
,

(5.10)

where γ′ is the contour defined by the equations

y′ 2a − σ′ 2a + Λ′ 2 = 0, Ẽa(σ
′, y′) =

n∑
b 6=a

ka · kb
σ′ab

(y′a + y′b) = 0, (5.11)

and H(σ′, y′) is defined with the τ ′a:b’s forms

τ ′ab =
1

2 y′a

(
y′a + y′b + σ′ab

σ′ab

)
. (5.12)

Note that the minus sign dΛ/Λ → −dΛ′/Λ′ is used to reorient the Λ contour. Finally, we

can now integrate around the point Λ′ = 0 which is the pole at infinity, therefore performing

the global residue theorem the (5.2) integral could be read as

I =
−2

Vol(GL(2,C))

∫
Γ̃

dΛ

Λ

( ∏n
i=1 dyi∏n

b 6=l(y
2
b − σ2

b + Λ2)

)(
n∏
a=1

dσa

Ẽa(σ, y)

)
H(σ, y)

∏n
c=1 y

2
c

(y2
l − σ2

l + Λ2)
,

(5.13)

where the new Γ̃ contour is now defined by the 2n equations

Λ = 0, y2
b − σ2

b + Λ2 = 0, for b 6= l, Ẽa(σ, y) = 0, for a ∈ {1, 2, . . . , n}. (5.14)

5.2 Recovering the curve

Note that in the result obtained in (5.13) the y2
l − σ2

l + Λ2 = 0 constraint is lost, i.e. we

are not anymore on the support of the curve y2
l = σ2

l − Λ2. Since our aim is to be on a

sphere then this constraint must be recovered. In order to get back the y2
l − σ2

l + Λ2 = 0

equation we perform the residue theorem but now using the yl variable.
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Before applying the residue theorem it is useful to remember the following, first, in full

view, the integration contour is defined by polynomials over the yi’s variables

Λ

n∏
b 6=l

(y2
b − σ2

b + Λ2))

n∏
a=1

Ẽa(σ, y) = Λ

n∏
b 6=l

(y2
b − σ2

b + Λ2))

n∏
a=1

 n∑
i 6=a

sab

(
ya + yi
σai

) ,
and secondly, the integrand

H(σ, y)
∏n
c=1 y

2
c

(y2
l − σ2

l + Λ2)
,

has just one singularity over the yi’s variables given by (y2
l − σ2

l + Λ2). With this in mind,

we are ready to use the residue theorem over yl. The integral by the yl variable is read as∫
Γ̃

dyl∏n
a=1 Ẽa

×
H(σ, y)

∏n
c=1 y

2
c

(y2
l − σ2

l + Λ2)
, (5.15)

so, performing the residue theorem one obtains1∫
Γ̃

dyl∏n
a=1 Ẽa

×
H(σ, y)

∏n
c=1 y

2
c

(y2
l − σ2

l + Λ2)
= −

∫
Γ

dyl

(y2
l − σ2

l + Λ2)
∏n
a 6=l Ẽa

×
H(σ, y)

∏n
c=1 y

2
c

Ẽl
, (5.16)

where Γ is the new integration contour defined by the 2n equations

Λ = 0, Ẽb(σ, y) = 0, for b 6= l, y2
a − σ2

a + Λ2 = 0, for a ∈ {1, 2, . . . , n}. (5.17)

Finally, the (5.2) integral is written as

I =
2

Vol(GL(2,C))

∫
Γ

dΛ

Λ

(
n∏
b=1

dyb
(y2
b − σ2

b + Λ2)

)( ∏n
a=1 dσa∏n

i 6=l Ẽi(σ, y)

)
H(σ, y)

∏n
c=1 y

2
c

Ẽl
.

(5.18)

Fixing the (σm, σn, σp, σq) puctures and the (Em, En, Eq) scattering equations the above

integral becomes

I=
1

22

∫
γ

(
dΛ

Λ

)( n∏
b=1

(yb dyb)

(y2
b − σ2

b + Λ2)

) ∏
a 6=m,n,p,q

dσa
Ea(σ, y)

 |m,n, q|∆FP(mnq, p)H(σ, y)

Ep
,

(5.19)

where the contour γ is defined by the equations

Λ = 0, Ẽb(σ, y) = 0, for b 6= {m,n, p, q}, y2
a−σ2

a+Λ2 = 0, for a = 1, 2, . . . , n. (5.20)

We call this integral the Λ-prescription.

Note that we have chosen the same labels for the punctures and scattering equations,

this will be useful when we will formulate the Λ−algorithm in section 6.2.

The Λ−prescription, (5.19), recovered the support on the curves y2
a = σ2

a − Λ2, more-

over, it must be computed around the cycles Λ → 0 and Λ → ∞, which are exactly the

same, as one can see in figure 1.

1There is no contribution from the point at infinity.
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Figure 1. (a) Limit Λ→ 0. (b) Limit Λ→∞.

In addition, one of the (n− 3) scattering equations becomes free, i.e. it now is part of

the integrand, in (5.19) it is Ep.

This new point of view gives us a new kind of diagrammatic representation, figure 1.

In the next section we will learn to use this new prescription and we will propose a new

algorithm (the Λ−algorithm).

6 Λ-diagrams and a new algorithm

Here we present a new algorithm, which is a consequence of the new prescription given

in (5.19).

Before formulating the algorithm we introduce some notations. Let us remember the

sa1...an Mandelstam variables are defined as2

sa1...an :=
1

2
(ka1 + · · ·+ kan)2. (6.1)

Nevertheless, it will be useful for us to use the variables

ka1...an :=

n∑
ai<aj

kai · kaj , (6.2)

Clearly, when the particles are massless, i.e. k2
i = 0, then sa1...an = ka1...an .

In the next two section, 6.1 and 6.1.1, we give all tools to formulate our new algorithm

in section 6.2. While we develope the sections 6.1 and 6.1.1, we apply all these tools on a

simple and particular example and at the end we obtain the result for the (5.19) integral.

2We have introduced the (1/2) factor for convenience.
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.

Figure 2. G graph associated to the integrand in (6.4).

6.1 More notations and a simple example

In the same way as in [17], any H(σ, y) integrand over M0,n can be written as a linear

combinations of integrands with no zeros , i.e. integrands with just 2n − τa:b factors. We

call this kind of integrands as3 HD(σ). Each HD(σ) integrand has associated a 4-regular

graph4 (bijective map), which we denoted by G = (VG, EG) [17, 58, 59]. The vertex set of

G is given by the n-labels (punctures)

VG = {1, 2, . . . , n}

and the edge set is given by the elements τa:b ↔ a b , i.e.

EG = { a b / τa:b is a factor into the HD(σ) integrand. }.

Since τa:b always appears into a chain, for instance, let us remember the smallest chain is

given by

τa:bτb:a, (6.3)

then the graph is not a directed graph, as well as in [17].

For example, let us consider the integrand

HD
4 (1, 2, 3, 4) = [1234]× [1234] , (6.4)

where the [ · ] bracket is defined as

[1234] = (τ1:2τ2:3τ3:4τ4:1) . (6.5)

This integrand is represented by the G graph in figure 2.

This is useful to clarify that the G graph must be draw such that the number of

intersection among the edges is as small as possible.

Note that the G graph does not have any information of the GL(2,C) symmetry and

the Λ parameter or branch cut. In order to introduce this information on the graph we

coloured the vertex set in the way given in figure 3.

The G graph can now contain the whole information of the integrand, i.e, it now

represents the total integrand I = |ijk|∆FP (ijk, d)H(σ).

For example, using the PSL(2,C) symmetry to fix the (σ1, σ2, σ3) punctures and the

scale symmetry to fix the σ4 puncture, the graph in figure 2 becomes as in figure 4, where

figure 4(c) shows the whole possibles non-zero contributions or configurations, up to Z2

symmetry ya → −ya, after performing the Λ integral around Λ = 0. It is explained in

detail in the next section.
3The D letter means that there are only σa factors into denominator.
4A G graph is defined by the two finite sets, V and E. V is the vertex set and E is the edge set.
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.

Figure 3. Coloured Vertices.

,

Figure 4. (a) Fixing (σ1, σ2, σ3) from the PSL(2,C) symmetry. (b) Fixing σ4 from the scale

symmetry. (c) Possibles contribution after performing the Λ integral.

6.1.1 Configurations and Λ-theorem

Although we previously have already used the word “configuration”, in this section we

give a formal definition. So, the first thing we do in this section is to define what is a

configuration

• Configuration: a configuration, which we denoted by C, is the integration over the

(y1, . . . yn) variables around one of the 2n solutions of the equations

y2
a − σ2

a + Λ2 = 0, for a = 1 . . . n. (6.6)

This definition means that a C configuration is the choosing of the 2n possibilities

given by (y1 = ±
√
σ2

1 − Λ2, . . . , yn = ±
√
σ2
n − Λ2), i.e. a configuration fixed the punctures

on the upper or lower sheet.

Now, with this in mind we are ready to come back to our example and note that

besides of two configurations given in figure 4(c), there are more possibles configurations

(up to Z2 symmetry) such as

,

where the red line enclose the punctures on the same branch cut, i.e. the red line is the

branch cut, which is controled by the Λ integration variable.
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Figure 5. Allowable configuration which vanishes.

However, these five configurations vanish trivially because the PSL(2,C) symmetry is

breaking on upper and lower sheet when Λ→ 0. This computation is straightforward.

So as to classify the different kind of configurations we introduce the following termi-

nology

• Allowable configuration: let C be a configuration. We say C is an allowable

configuration if the number of fixed punctures on the upper and lower sheet is two.

This implies that in the Λ→ 0 limit the PSL(2,C) symmetry is well defined (gauged)

on each sheet.

Clearly, for the diagram in figure 4 there is one more allowable configuration given in

figure 5, but this one also vanishes.

The vanishing of this last configuration is a consequence of the following theorem

Λ-theorem. Let C be an allowable configuration, then the integrand I =

|ijk|∆FP (ijk, d)HD(σ) on the C configuration has the Λ−behavior

I
∣∣∣C
Λ→0

∼ ΛL−4 + O(ΛL−3)

around Λ = 0, where L is the number of edges which are intersected by the red line.

This theorem is proved in appendix A.

So far, we have defined what is a configuration, an allowable configuration and we have

formulated the Λ−theorem. Now, with the intention to set down the Λ−algorithm it is

useful to define a new kind of configuration

• Singular configuration: let C be a configuration. We say C is an sin-

gular configuration if C is an allowable configuration and the integrand, I =

|ijk|∆FP (ijk, d)H(σ) ∼ Λ−s, s > 0 around Λ = 0.

Following with our example, we note that expanding the I =

|123|∆FP (123, 4)HD
4 (1, 2, 3, 4) total integrand and the E4 scattering equation (S.E)

around Λ = 0, the two configurations in figure 4(c) become as in figure 6. Thus, the

integration over Λ is straightforward and the final result is given in figure 7, which is the

right answer.

We call this method the Λ−algorithm. In the next section we explain carefully this

algorithm.
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Figure 6. Computing the non-zero allowable configurations.

,

Figure 7. Final solution for the integrand in (6.4).

6.2 The Λ-algorithm

In this section we introduce formally the Λ−algorithm, which is given up to Z2 symmetry,,

ya → −ya.
We describe step by step the method.

Λ-algorithm steps.

• (1) To draw the graph to be computed. Let us remember that the graph must be

drawn such that the intersection number of the edges is the minimum.

This drawing must have three yellow vertices (PSL(2,C) gauge fixing) and one green

vertex (scale symmetry fixing)













.

Figure (a). 4-Regular graph. PSL(2,C) (Yellow) and scale symmetry (Green) gauge fixing.

• (2) To find all non-zero allowable configurations
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Figure (b). One non-zero allowable configuration.

The gauge fixing from the step (1) must be chosen such that there are not singular

configurations. This fact becomes clearer in section 7.

If it is not possible to choose a gauge fixing such that it avoids singular configurations

then the Λ−algorithm can not be applied directly.

From the Λ−theorem, it is clear that the red line in all non zero configurations

intersects only 4 black lines, i.e. just 4 black lines go through the branch cut.

• (3) To compute the Λ integral around the cycle |Λ| = ε (on all configurations found

in the previous step).

– (i) After computing the Λ integral (on one particular configuration) the sphere

is splitting into two spheres, the upper-sheet and the lower-sheet. This splitting

is identified by the red line. As a consequence two new (massive) punctures

arise, one on the upper and the other one on the lower-sheet. These punctures

are fixed on each sheet at the point σ0 = 0 and they are denoted by the red

color. This process is shown in the following figure



































 .

Figure (c). Computating the Λ integral on one particular configuration.

The particles inside of the red line, including now the new red massive puncture

at σ0 = 0 on the upper-sheet, shape a new 4-regular graph on the upper-sheet

(subdiagram) and the particles outside of the red line, including the new red

massive puncture at σ0 = 0 on the lower-sheet, shape the other new 4-regular

graph (subdiagram), such as it is shown in figure (c).
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The momentum of the red massive puncture on the upper-sheet is the sum over

all momenta of the particles outside of the red line, i.e.

kupper
0 = kp + · · ·+ kq + · · ·+ kr + · · · , (6.7)

and the momentum of the red massive puncture on the lower-sheet is the sum

over all momenta of the particles inside of the red line, i.e.

klower
0 = km + · · ·+ kn + · · · . (6.8)

– (ii) The scattering equation associates to the puncture in the green triangle, in

figure (c) it is Ep, becomes.

Ep =
∑

a 6=upper sheet

kp · ka
σpa

+
kp · klower

0

σp
+O(Λ).

Using the scattering equations (at Λ = 0) located on the same sheet as the green

puncture, in figure(c) it is the lower sheet, i.e Er, . . ., it is straightforward to

prove that

Ep = − (σq − σ0)(σ0 − σq)
(σ0 − σp)(σp − σq)(σq − σ0)

kp...q...r... +O(Λ) ,

where σ0 = 0. The (σ0 − σp)(σp − σq)(σq − σ0) factor becomes one of

the two Faddeev-Popov determinants on the lower brach and the numerator,

(σq − σ0)(σ0 − σq), cancels out with the |m,n, q|∆FP(mnq, p) Faddeev-Popov

expansion given in appendix A. Therefore, one can say that the Ep scattering

amplitude becomes the propagator

1

Ep
→ 1

kp...q...r...
.

Note that although in our example (figure (c)) kp...q...r... = km...n..., in general

this is not true. Since the Λ−algorithm is a iterative process then new massive

particles arise (red punctures) and the equality kp...q...r... = km...n... can be broken.

Finally, the two new subdiagrams are given in the original CHY approach, where

(σ0, σm, σn) are the gauged punctures on the upper-sheet and (σ0, σp, σq) are the

gauged punctures on the lower-sheet.

• (4) To come back to the step (1).

It is useful to remember that a 4-regular graph with 3 vertices is just 1

Figure (d). 3-point 4-regular graph.
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Figure 8. Building Blocks.

, .

Figure 9. Building Blocks (I) and (II).

,

.

Figure 10. Building Blocks (III) and (IV).

6.3 Building blocks

Since that the Λ-algorithm is an iterative process then it is useful to construct fundamental

graphs or irreducible graphs (building blocks).

Our building blocks are given by the following diagrams of 4 and 5 vertices in figure 8.

The (I) graph, which was computed previously, and (II) graph are trivials and their results

are given in figure 9 [2].

In order to compute the the (II) and (III) building blocks, one can note that on the

support of the Ed scattering equation (before performing the residue theorem, section 5)

Ed = kad τd:a + kbd τd:b + kcd τd:c = 0 ⇒ −1 =
kad
kcd

(
τd:aτb:c
τb:aτd:c

)
. (6.9)

So, the (III) and (IV ) graphs in figure 8 become very simples, see figure 10.

Finally, the (V ) building block in figure 8 can not be computed using the Λ−algorithm,

because this graph has a singular configuration. So, we use the algorithm given in [17] (the

general KLT algorithm).
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Figure 11. Decomposition in two 2-regular graphs.

, ,

Figure 12. Left and right base.

,

Figure 13. Graph representation of the I(V ) = (L IL)T(mL|R)−1(R IR) computation.

6.3.1 General KLT algorithm and computation of the (V ) building block

In order to apply the general KLT algorithm [17] on the (V ) building block, one must first

note that this building block has the following decomposition (in two 2-regular graphs)

given in figure 11. The second step is to find a left and right (Parke-Taylor) base compatible5

with the the IL and IR graphs. Choosing the left and right base as in figure 12, and

following the general KLT algorithm [17], it is straightforward to read the (V ) building

block as in figure 13, where the relative sign was explained in [2].

So as to be consistent with the initial gauge fixing we must keep it,6 i.e. the color of

the vertices.

Although in [2] was given an algorithm to computed the diagrams found in figure 13,

we apply the Λ−algorithm since it works when one of the particles is off-shell.

5A Parke-Taylor factor is said to be compatible with a 2-regular graph if the union of the two graphs,

which is a 4-regular graph, admits a Hamiltonian decomposition, i.e., it is the union of two Parke-Taylor

factors.
6This fact is very important, because when the Λ−algorithm is iterated then massive particles arise and

the gauge fixing must be kept step by step to obtain the right answer.

– 25 –



J
H
E
P
0
6
(
2
0
1
6
)
1
0
1

.

Figure 14. Λ−algorithm. (1) Integrand. (2) Allowable configurations non zero. (3) Computing

the Λ integral. (4) Final answer.

Figure 15. Computation of the m
L|R
22 and m

L|R
21 matrix components, respectively.

Let us consider the second component of the first vector given in figure 13 (see fig-

ure 14). In figure 14 we describe step by step the Λ−algorithm for a particular diagram in

figure 13:

• (1) We draw the graph to be computed, including the gauge fixing (colored vertices).

• (2) We find the all non-zero allowable configurations, which is only one.

• (3) We compute the Λ integral around Λ = 0.

– (i) The scattering equation 1/Eb becomes the propagator 1/kab.

– (ii) The subdiagram obtained on the upper-sheet is a 4-regular graph at three

point, which is trivial,, i.e. 1. On the other hand, the 4-regular subdigram

obtains on the lower-sheet is a 4-point graph, which is the (II) building block

given in figure 8.

– (iii) The new massive particle in the graph on the lower-sheet has momentum

k0 = ka + kb.

• (4) we used the (II) building block in figure 8 to obtain the final answer.

Following the same simple procedure one can compute all graphs in figure 13, for

example, the m
L|R
22 and m

L|R
12 matrix components, respectively, are given in figure 15.

Therefore, the I(V ) building block is
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Figure 16. Six-point examples.

.

Figure 17. Gauge Fixing.

I(V ) =

(
1

kabkde

)2
(

1

1

)T( 1
kbcekbe

0

0 1
kaekbd

)−1(
−1

1

)

=

(
1

kabkde

)2

(kaekbd − kbcekbe) . (6.10)

7 Examples

Although in the previous section we have already applied the Λ−algorithm, the idea here

is to give some non-trivial examples in order to show the power of this new algorithm.

This section is divided as follows, the first example show us how to use the Λ algorithm,

which will be applied over a six point highly non trivial diagram. The idea of the second

one is to mix the Λ algorithm with the KLT general algorithm [17], where we will compute

a six point diagram which cannot be performed just with the Λ algorithm. Finally, the

last one is given in order to illustrate the using of all building blocks, with this in mind we

choose a non trivial eight point diagram.

7.1 Six-point

Let us consider the following two non-trivial six-point examples in figure 16.

The first one, I(A), will be computed just using the Λ−algorithm. For the second

one, I(B), the Λ−algorithm is not enough. We will combine the Λ and the general KLT

algorithm [17] to compute it.

7.1.1 I(A)-computation

In order to avoid singular configurations we choose the gauge fixing given in figure 17.
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Figure 18. Allowable configurations of type 1.

.

Figure 19. Allowable configurations of type 2.

.

Figure 20. Computing the (I) diagram.

This is straightforward to see that there are two kind of allowable configurations. The

first one is given by the diagrams in figure 18 and the second one in figure 19.

Since the elements of each type are totally analogues then we only compute one of

each set.

Let us begin by computing the (I) configuration in figure 18. Applying the

Λ−algorithm, the E5 scattering equation becomes the 1/k356 propagator and the diagram

breaks into two graphs (upper and lower sheet) in the original CHY approach, as it is shown

in figure 20. Using the building blocks given in section 6.3 (see figure 9 and figure 10), we are

able to find the final answer for the (I) configuration in figure 18. Thus, following the same

procedure for the (II) and (III) configurations one obtains the results given in figure 21.

We must now compute the (a) and (b) configurations in figure 19. Let us start with the

(a) configuration. From the Λ−algorithm one has the 5-point subgraph given in figure 22.

So as to apply the Λ−algorithm on the resulting 5-point graph, we must fix the scale

symmetry (S.S). We gauge the σ4 puncture as in figure 23. It is simple to see that the non-

zero allowable configurations in figure 23 are given in figure 24. These three configurations

are straightforward to compute applying the Λ−algorithm, see figure 25, where it is useful

to remember that k0 = k2 + k3, figure 22. From the building blocks of the section 6.3,

– 28 –



J
H
E
P
0
6
(
2
0
1
6
)
1
0
1

Figure 21. Results of the (I), (II) and (III) configurations.

.

Figure 22. Computing the (a) configuration in figure 19.

.

Figure 23. Gauging the Scale Symmetry (Iterative process).
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Figure 24. Allowable configurations 5-point graph (Iterative process).

,

Figure 25. Allowable configurations five-point graph (Iterative process).

.

Figure 26. Result (a) configuration.

figure 10, we obtain the final answer for the (a) configuration in figure 19, see figure 26.

Performing the same procedure for the (b) configuration one obtains the result given in

figure 27.

Therefore, summing over all allowable configurations we obtain the total answer for

the I(A) graph, which is given by the non trivial expression

I(A) = (I) + (II) + (III) + (a) + (b)

=
B[14 : 34 + 45 + 46]

k356

(k36)2B[56 : 36]

(k56)2
+
B[14 : 34]

k256

(k26)2B[56 : 26]

(k56)2
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Figure 27. Result (b) configuration.

+
B[34 : 14 + 45 + 46]

k156

(k16)2B[56 : 16]

(k56)2
(7.1)

+
1

k1456

[
(k26 + k36)2B[56 : 26 + 36]

k14(k56)2
+

(k16)2B[56 : 16]

(k24 + k34)(k56)2
+

(k46)2B[56 : 46]

k456(k56)2

]
+

1

k3456

[
(k36 + k46)2B[56 : 36 + 46]

k34(k56)2
+

(k36)2B[56 : 36]

(k14 + k24)(k56)2
+

(k46)2B[56 : 46]

k456(k56)2

]
,

where we have defined

B[A+B + · · · I : C +B + · · · J ] :=
1

kA + kB + · · · kI
+

1

kC + kD + · · · kJ
, (7.2)

and the labels A,B,C,D, I and J mean a index set, for example kA := ka1···am .

The (7.1) result was checked numerically.

7.1.2 I(B)-computation (general KLT and Λ algorithms)

In section 6.3 we have combined the general KLT algorithm [17] and the Λ−algorithm,

respectively, in order to compute the (V ) building block, however, in this section our idea

is the opposite. First, we apply the Λ−algorithm as far as it is possible. From this method

we will obtain subdiagrams with less vertices than the original one. Second, we perform

the general KLT algorithm on these subdiagrams and finally we will be able to use the

Λ−algorithm, again, to compute the diagrams into the vectors and matrix, such as it was

done in section 6.3.1.

Let us remember that in the general KLT algorithm [17] one must find a base, left (L)

and right (R), such that all graphs have a Hamiltonian decomposition, i.e. the integrands

are product of two Parke-Taylor factors. One of its main drawback is to compute the

inverse of the Gram matrix given by the product among the left and right base, mL|R. For

example, in six-point it is necessary to invert a 6 × 6 matrix.

However, since our idea is first to apply the Λ−algorithm then this drawback is soft-

ened.

Let us consider the I(B) example in figure 16. In order to avoid singular allowable

configurations we set the gauge fixing given in figure 28. There are only three non-zero

allowable configurations, which are shown in figure 29. Since these three configurations are
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Figure 28. Gauge Fixing.

.

Figure 29. Non-zero configurations.

.

Figure 30. Computing the (i) configuration.

the same up to relabel the (1,2,3) vertices then it is enough just to compute one of them,

for example we choose the first one, (i) configuration. Following the techniques presented

in the section 7.1.1 one obtains the decomposition in figure 30. The 5 point graph on

the right hand side can not be computed using the Λ−algorithm presented in section 6.2,

therefore we use the general KLT-algorithm [17].

Following the same procedure used to compute the (V ) building block in figure 8

(general KLT algorithm), we must break the 5 point graph (4-regular graph) into two 2-

regular graphs (Left and Right) given in figure 31, where we have fixed the vertex number 5

using the scale symmetry. We choose the left and right base as7 in figure 32, such that the

diagrams in the (LIL) and (RIR) vectors have a Hamiltonian decomposition [58, 59]. Thus,

we can write the 5-point diagram in figure 31 as the matrix product (LIL)(mL|R)−1(RIR),

diagrammatically one can see it in figure 33. Using the Λ−algorithm we compute each

diagram in figure 33, and the result is given in figure 34.

7Unlike of the general KLT algorithm presented in [17], we must keep the initial gauge fixing. This is

important because the Λ−algorithm has generated a massive particle (red vertex).
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Figure 31. Splitting the 5 point 4-regular graph in two 2-regular graphs (Left and Right) . The

“5” vertex has been fixed by the scale symmetry.

, ,

Figure 32. Left and Right base.

.

Figure 33. General KLT algorithm.

Figure 34. Result from the general KLT algorithm.
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Figure 35. Left and Right base.

.

Figure 36. Gauge Fixing.

Relabeling the (1,2,3) indices one can write the final answer as

I(B) =

(
−1

k456k46
1

k456(k16+k26+k36) + 1
k45(k46+k56)

)T

(7.3)

×

 1

k13

(
B[15+35:256]

k26
1

k26k256
1

k25(k26+k56) + 1
k256(k16+k36+k46)

1
k256(k16+k36+k46) + B[16+36:26+56]

k25

)−1

+
1

k23

(
B[25+35:156]

k16
1

k16k156
1

k15(k16+k56) + 1
k156(k26+k36+k46)

1
k156(k26+k36+k46) + B[26+36:16+56]

k15

)−1

+
1

k12

(
B[25+15:156]

k36
1

k36k356
1

k35(k36+k56) + 1
k356(k26+k16+k46)

1
k356(k26+k16+k46) +B[26+16:36+56]

k35

)−1
( 1

k456k56
−1

k456k56

)
,

which was checked numerically.

7.2 Eight-point

In this section we consider a non-trivial 8 point graph, which has the left and right decom-

position as in figure 35. In addition to continue testing the power of the algorithm, this

kind of graph was chosen in order to use the (V ) building block (figure 8).

First we fix a gauge such that there is no a singular configuration, for example we

choose the gauge fixing as in figure 36. Using this gauge we find three types of non-zero

allowable configurations, see figure 37. Applying the Λ−algorithm one obtains that from

the Type (I), {(a), (b)}, arises a 6-point subdiagrams with the graph given in figure 38,

where we have fixed the “a”-puncture (by scale symmetry) in order to avoid singular
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Figure 37. Non-zero allowable configurations. Type (I): (a) and (b) configurations. Type (II):

(1), (2) and (3) configurations. Type(III): (i) configuration.

,

Figure 38. Six point graph from the Type (I) configuration.

configurations. This graph is very similar to one given in figure 17 and its computation is

totally analog. Using the Λ−algorithm the result for this graph is the function

Fab(ka, kb, kc, kd, ke, kf ) = −
(

kdfB[ef : df ]

kab(kac + kbc)kef
+

(kaf + kbf + kdf )B[ef : af + bf + df ]

kabkcefkef

)
−
(

(kaf + kdf )B[ef : af + df ]

kadkbckef
+

(kaf + kbf + kdf )B[ef : af + bf + df ]

kadkcefkef

)
−
kdfB[bc : cd+ ce+ cf ]B[ef : df ]

kabckef
. (7.4)

Therefore, the (a) and (b) configurations can be written as

(a) = −k23B[12 : 23]

k123k12
Fab(k8, k1 + k2 + k3, k4, k7, k5, k6), (7.5)

(b) = −k57B[56 : 57]

k567k56
Fab(k4, k5 + k6 + k7, k8, k3, k1, k2). (7.6)

From the type (II) configurations, {(1), (2), (3)}, one obtains the following 5-point sub-

diagrams in figure 39 after applying the Λ−algorithm. The first one, F 5
13(ka, kb, kc, kd, ke),
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Figure 39. Five point graphs from the Type(II) configurations.

.

Figure 40. Five point graphs from Type(III) configuration.

is a subdiagram obtained from the (1) and (3) configurations and the second one,

F 5
2 (ka, kb, kc, kd, ke), is obtained from the (2) configuration. These two subdiagrams are

very similar to one obtained in figure 23 and their computations are very simple using the

Λ−algorithm. The results for these two graphs are

F 5
13(ka, kb, kc, kd, ke) = −kceB[de : ce]

kabkde
− (kae + kce)B[de : ae+ ce]

kbdekde
, (7.7)

F 5
2 (ka, kb, kc, kd, ke) = −kceB[de : ce]

kabkde
− (kae + kce)B[de : ae+ ce]

kackde
. (7.8)

Note that the two answers are totally different, this is because kac 6= kbde since there

is a massive particle. We can now write the results for the Type (II) configurations,

{(1), (2), (3)}, as

(1) =
F 5

13(k4 + k5 + k6 + k7, k8, k3, k1, k2)F 5
13(k1 + k2 + k3 + k8, k4, k7, k5, k6)

k4567
, (7.9)

(2) =
F 5

2 (k4, k5 + k6 + k7 + k8, k3, k1, k2)F 5
2 (k8, k1 + k2 + k3 + k4, k7, k5, k6)

k5678
, (7.10)

(3) =
F 5

13(k7, k8, k3 + k4 + k5 + k6, k1, k2)F 5
13(k3, k4, k1 + k2 + k7 + k8, k5, k6)

k4567
. (7.11)

Finally, from the Type (III) configuration, {(i)}, one obtains the subdiagrams in fig-

ure 40. The first one, FV (ka, kb, kc, kd, ke), is the (V ) building block computed in sec-

tion 6.3.1 and it is given by

FV (ka, kb, kc, kd, ke) =

(
1

kabkde

)2

(kaekbd − kbcekbe). (7.12)
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The second one was also computed in section 6.3.1 using the Λ−algorithm and its result

is very simple

F (i)(ka, kb, kc, kd, ke) =
1

kabkde
. (7.13)

Thus, the (i) configuration can be read as

(i) =
FV (k1, k2, k3 + k4 + k7 + k8, k5, k6) F (i)(k7, k8, k1 + k2 + k5 + k6, k3, k4)

k3478
(7.14)

The full answer is the sum over all configurations given in figure 37, i.e.

I8 = (a) + (b) + (1) + (2) + (3) + (i) (7.15)

= −k23B[12 : 23]

k123k12
Fab(k8, k1 + k2 + k3, k4, k7, k5, k6)

− k57B[56 : 57]

k567k56
Fab(k4, k5 + k6 + k7, k8, k3, k1, k2)

+
F 5

13(k4 + k5 + k6 + k7, k8, k3, k1, k2)F 5
13(k1 + k2 + k3 + k8, k4, k7, k5, k6)

k4567

+
F 5

2 (k4, k5 + k6 + k7 + k8, k3, k1, k2)F 5
2 (k8, k1 + k2 + k3 + k4, k7, k5, k6)

k5678

+
F 5

13(k7, k8, k3 + k4 + k5 + k6, k1, k2)F 5
13(k3, k4, k1 + k2 + k7 + k8, k5, k6)

k4567

+
FV (k1, k2, k3 + k4 + k7 + k8, k5, k6) F (i)(k7, k8, k1 + k2 + k5 + k6, k3, k4)

k3478
.

This result was checked numerically.

8 The Baadsgaard, Bohr, Bourjaily and Damgaard Rules (BBBD) vs

the Λ-algorithm

In [18], Baadsgaard et al., formulated some rules in order to compute the same kind of

integrals or diagrams that we have studied so far. Nevertheless, although their rules are a

certain sum over all possible factorization limits, similar to the Λ-algorithm, these two algo-

rithms present important differences. For example, the Λ-algorithm depends of the gauge

fixing, such as it has been explained and shown in section 6. This particular characteristic

is in fact a powerful tool, for instance, using the BBBD rules, which are independent of

the choice of gauge, it is not possible to compute directly integrands such as ones given by

the diagrams in figures 17, 23, 36, 38 or 39. The reason is because there are four or three

edges connecting two vertices. Nevertheless, as it has already been shown, these kind of

diagrams can be easily computed using the Λ-algorithm.

At the same way as in [18], the Λ-algorithm can also be directly used to integrands

with non trivial numerator. For example, let us consider the same diagram as in [18], see

figure 41, where the black dotted line counts as negative solid line (antiline), i.e. it carries

negative weight. Clearly this diagram corresponds to the integrand

HN6 =
(τ1:2τ2:3τ3:4τ4:5τ5:6τ6:1)(τ1:2τ2:3τ3:5τ5:6τ6:1)(τ2:4τ4:6τ6:2)

(τ2:6τ6:2)
, (8.1)
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Figure 41. Gauge fixing for the N6 numerator diagram.

.

Figure 42. Non zero configurations for the N6 diagram.

or using the CHY variables one can write it as

HN6
CHY =

(z2 − z6)

(z1−z2)2(z1−z6)2(z2−z3)2(z5−z6)2(z2−z4)(z3−z4)(z3−z5)(z4−z5)(z4−z6)
.

Note that the lines and the antilines connecting the same two vertices cancel each other.8

Moreover, due to the presence of a non trivial numerator, the denominator has more factors

than otherwise, this is so as to retain the SL(2,C) invariance.

Obviously, the N6 diagram in figure 41 is not a 4-regular graph, but the subtraction

between the number of lines and antilines must always be four (on each vertex) in order

to keep the SL(2,C) symmetry.

To compute the N6 diagram we are obliged to extend the Λ-Theorem

• Λ-theorem (extension).

Let C be an allowable configuration, then the integrand I = |ijk|∆FP (ijk, d)H(σ)

on the C configuration has the Λ−behavior

I
∣∣∣C
Λ→0

∼ Λ(L−A)−4 + O(Λ(L−A)−3), (8.2)

around Λ = 0, where L is the number of lines and A is the number of antilines which

are intersected by the red line.

Using the Λ-theorem (extension). it is simple to see there are only two non zero

allowable configurations given in figure 42. These two configurations are easily calculated

from the rules in section 6.2, so the first one configuration reads

N I
6 =

1

k3456 k456 k56
, (8.3)

8This fact means that a numerator cancels with one denominator.
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and the second one as

N II
6 =

1

k1456

[
1

k456 k56
+

1

k156

(
1

k56
+

1

k16

)]
. (8.4)

Therefore, the final result can be written

N6 = N I
6 +N II

6 (8.5)

=
1

k3456 k456 k56
+

1

k1456

[
1

k456 k56
+

1

k156

(
1

k56
+

1

k16

)]
, (8.6)

which is the same answer found in [18].

This show how powerful is the Λ−algorithm, which can be applied to solve highly non

trivial integrands.

9 Discussions

In this paper we gave a new representation for the CHY integrals. We call this new

representation as the Λ−prescription. The Λ−prescription is supported on an algebraic

curve of degree two, which is embedded in CP 2, i.e. this is a sphere. This curve can be

thought as a Riemann surface with two sheets connected by a branch cut.

The new scattering equations (the Λ-scattering equations) must contain information

about the branch where the particles (punctures) are localized. For example, the Λ scat-

tering equations are given by the expression

Ea :=

n∑
b 6=a

ka · kb τa:b, where τa:b :=
1

2 ya

(
ya + yb + σab

σab

)
, and y2

a = σ2
a − Λ2,

with a = 1, . . . n. When ya =
√
σ2
a − Λ2 one says that the particle (puncture) is on the

upper sheet and when ya = −
√
σ2
a − Λ2 then one says that the particle is on the lower

sheet. Note that the quadratic curves, ya, have an additional parameter, Λ, which controls

the opening of the branch cut. When this parameter is promoted as a variable then a new

symmetry arise (scale symmetry), which can be used to fix one more particle (puncture).

In section 5 we performed the global residue theorem over this new variable, Λ. After

integrating Λ one obtains that the Λ prescription must be evaluated at the point Λ = 0

(Λ = ∞), i.e. at the limit when the branch cut collapses in a line. So, the initial integral

is broken into two new smaller integrals, which are now written as in the original CHY

approach. In addition, these two new integrals are multiplied by a propagator, which is

associated to the collapsed branch cut, it is kind a factorization limit. This is an iterative

process, i.e. it can be applied over each one of these two new integrals. All this procedure

is encoded into what we call the Λ-algorithm.

The Λ−algorithm allow us to expand a given integral in terms of fundamental building

blocks, given in figure 8.

Unlike to the other algorithms, the Λ−algorithm depends totally of the gauge fixing.

Although this does not look like to be a good thing, in fact it is. For example, diagrams
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Figure 43. Two 2-regular graphs. Ia is a Parker-Taylor graph. Ib is a bubble with a regular

polygon graph.

such as ones given in figure 16, which are very complicated using other type of algorithms,

they are easily computed from the Λ algorithm, obviously, after choosing a good gauge.

The Λ algorithm is a powerful, simple and beautiful tool because it is a pictorial

algorithm. Nevertheless, this mechanism has some limitations, i.e. there are some CHY

integrals which can not be performed just using this algorithm. This is due we do not know

the behavior of the singular allowable configurations, which is the reason why one must

choose a good gauge. It will be very interesting to know how to extend the Λ algorithm to

singular allowable configurations.

We know that the Λ algorithm can be used on a big spectrum of CHY integrals, the

main idea is to choose a gauge such that the all allowable configurations will not be singular.

In particular, we know diagrams on which this fact always happens. These diagrams are

given by all possible combinations of the two 2-regular graphs in figure 43. The Ia graph is

clearly a Parker-Taylor factor, therefore, the diagram given by the integrand H(σ) = Ia Ia
is just the m(α|β) kernel, which is very simple to compute. The other two options given

by the integrands H(σ) = Ia Ib and H(σ) = Ib Ib, which are non trivial diagrams, they

can be easily computed using the Λ algorithm.

The Λ algorithm has two more advantages. As we saw, some massive particles arise

in the process, so this algorithm supports off shell particles. The other one is that this

algorithm could be used on integrands with non trivial numerators, such as one given in fig-

ure 41. These two characteristics are very important in order to compute diagrams at loop

level, for example, the diagram given by figure 44, which appears at 1-loop computation of

the 5-gon, it can easily be computed using the Λ−algorithm [60].

Finally, note that the integrand in the Λ prescription is basically obtained from the

original CHY approach just changing the 1
zab

form by the τa:b form. However, although
1
zab

is an antisymmetric form, i.e 1
zab

= − 1
zba

, the τa:b form is not, τa:b 6= −τa:b. So, the

antisymmetric matrix, Ψαβ , which was defined in [1], it is not any more antisymmetric when

(zab)
−1 is replaced by τab. Therefore, the Pfaffian of Ψαβ(τa:b) is not well defined. Naively,

in order to give an interpretation for the Yang-Mills theory from the Λ prescription one can

replace the Pfaffian of Ψαβ(za:b) by
√

det (Ψαβ(τa:b)), but we leave this for future research.
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Figure 44. 5-gon CHY diagram representation.
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A Λ-theorem

In this appendix we prove the Λ-theorem, which was given in section 6.1.1.

Λ-theorem. Let C be an allowable configuration, then the integrand I =

|ijk|∆FP (ijk, d)HD(σ) on the C configuration has the Λ−behavior

I
∣∣∣C
Λ→0

∼ ΛL−4 + O(ΛL−3)

around Λ = 0, where L is the number of edges which are intersected by the red line.

Proof. Let us consider an allowable configuration, i.e. two fixed punctures on the upper

branch and the others two fixed punctures on the lower branch. Without loss of generality,

one can consider the 1 and 2 puntures fixed on the upper branch and the 3 and 4 puntures

fixed on the lower branch. Under this consideration it is straightforward to check that the

Faddeev-Popov determinant has a behavior

|1, 2, 3|∆FP (1, 2, 3|4) =
25 σ2

1 σ
2
2 σ

3
3 σ4 (σ1 − σ2)2(σ3 − σ4)

Λ4
− 1

σ4 Λ2
+O(Λ0). (A.1)

Before showing that HD(σ) ∼ ΛL, we analyse the τa:b form. When the σa and σb punctures

are on upper sheet, i.e. ya =
√
σ2
a − Λ2 and yb =

√
σ2
b − Λ2, the τa:b form has the behavior

τa:b

∣∣∣a,b =
1

σab
− Λ2

4σ2
a σb
−

(σ2
a + σa σb + 3σ2

b )Λ
4

24 σ4
a σ

3
b

+O(Λ6), (A.2)
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where τa:b

∣∣∣a,b means that σa and σb are on the upper branch cut. For the others three more

configurations, (a → upper, b → lower), (a → lower, b → upper) and (a → lower, b →
lower), the Λ expansion is read as

τa:b

∣∣∣a
b

=
1

σa
+

(σa + 2σb)Λ
2

22 σ3
aσb

+
(σ3
a + σ2

aσb + 3σaσ
2
b + 6σ3

b )Λ
4

24 σ5
aσ

3
b

+O(Λ6),

τa:b

∣∣∣ b

a
=

Λ2

22 σ2
aσb

+
(σ2
a + σaσb + 3σ2

b )Λ
4

24 σ4
aσ

3
b

+O(Λ6), (A.3)

τa:b

∣∣∣
a,b

=
σb

σ2
a − σaσb

− (σa + 2σb)Λ
2

22 σ3
aσb

−
(σ3
a + σ2

aσb + 3σa]σ
2
b + 6σ3

b )Λ
4

24 σ5
aσ

3
b

+O(Λ6).

Now, let us remember that the HD(σ) integrand is given by the products of chains,

i.e. the products of factors such as

[a1, . . . ak] = (τa1:a2 τa2:a3 · · · τak−1:ak τak:a1). (A.4)

This implies the number of edges which are intersected by the red line is a even number,

it is because for each τai:aj

∣∣∣ai
aj

term into the chain, it must also have a term such as

τam:an

∣∣∣ an

am
, in order to close it. So, from this fact and using the Λ expansion given in (A.2)

and (A.3), it is straightforward to conclude that

HD(σ) ∼ ΛL, (A.5)

where L is the number of edges which are intersected by the red line. Thus the Λ−theorem

has been proved �

The proof for the Λ−theorem (Extension), given in section 8, is completely analogous.
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