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Abstract.
Here we give a brief review on the current bounds on the general Majorana transition

neutrino magnetic moments (TNMM) which cover also the conventional neutrino magnetic
moments (NMM). Leptonic CP phases play a key role in constraining TNMMs. While the
Borexino experiment is the most sensitive to the TNMM magnitudes, one needs complementary
information from reactor and accelerator experiments in order to probe the complex CP phases.

1. Introduction

The study of neutrino electromagnetic properties is of great importance, since it could open
a new window to investigate physics beyond the Standard Model. Though there are various
types of electromagnetic properties [1, 2], such as a neutrino charge radius [3, 4, 5, 6] or a
neutrino milli-charge [7, 8], here we concentrate on the case of TNMM [9, 10, 11]. These are
appealing for several reasons. For instance, like neutrinoless double beta decay [12], TNMMs
can shed light on the fundamental issue of the Dirac or Majorana nature of neutrinos [9, 10, 11].
They are also expected to be calculable in a gauge theory, their finite values given in terms of
fundamental neutrino properties, such as masses and mixing parameters, in addition to other
genuine new physics parameters such as new messenger particle masses. The main constraints
on neutrino electromagnetic properties come from reactor neutrino studies [13, 14] as well as
from solar neutrino data [15, 16]. There are, moreover, many proposals aiming to improve the
current bounds, one of them using a megacurie 51Cr neutrino source and a large liquid Xenon
detector [17]. Based on the analysis reported in [18], we summarize some of the most relevant
constraints on TNMM and discuss their dependence on the CP phases.

We include different types of neutrino data samples, such as the most recent data from the
TEXONO reactor experiment [14], as well as the latest results from the Borexino experiment [19].
Data from the reactor experiments Krasnoyarsk [20], Rovno [21] and MUNU [22] along with the
accelerator experiments LAMPF [23] and LSND [24] are also included. In addition, we take into
account the updated values of the neutrino mixing parameters as determined in global oscillation
fits [25], including the value of θ13 implied by Daya-Bay [26] and RENO [27] reactor data, as
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well as accelerator data [28]. Besides, we stress on the role played by the, yet unknown, leptonic
CP violating phases.

2. Neutrino magnetic moments

The interaction between Majorana neutrinos and the electromagnetic field is described by the
general effective Hamiltonian [9]

HMem = −1

4
νTLC

−1λσαβνLFαβ + h.c., (1)

with λ = µ−id a complex antisymmetric matrix in generation space, implying that µT = −µ and
dT = −d are pure imaginary. Therefore, we need six real parameters to describe the Majorana
NMM. The Majorana NMM matrix can be written in the flavor (mass) basis, λ (λ̃), as follows

λ =

 0 Λτ −Λµ
−Λτ 0 Λe
Λµ −Λe 0

 , λ̃ =

 0 Λ3 −Λ2

−Λ3 0 Λ1

Λ2 −Λ1 0

 . (2)

Here we have defined λαβ = εαβγΛγ , through the complex parameters: Λα = |Λα|eiζα ,
Λi = |Λi|eiζi . Having described our theoretical framework, we now discuss the relation of
these observables with the parameters measured in current neutrino experiments. For neutrino-
electron scattering, the differential cross section for the NMM contribution will be given by(

dσ

dT

)
em

=
πα2

m2
eµ

2
B

(
1

T
− 1

Eν

)
µν

2, (3)

where µν is an effective magnetic moment accounting for the NMM contribution to the scattering
process. It is defined in terms of the components of the NMM matrix in Eq. (2). In the flavor
basis, this parameter can be written as [16]

(µFν )2 = a†−λ
†λa− + a†+λλ

†a+, (4)

where we have denoted the negative and positive helicity neutrino amplitudes by a− and a+,
respectively. The flavour and mass neutrino basis are connected through the neutrino mixing
matrix U

ã− = U †a−, ã+ = UTa+, λ̃ = UTλU, (5)

such that the effective NMM in the mass basis is given by

(µMν )2 = ã†−λ̃
†λ̃ã− + ã†+λ̃λ̃

†ã+. (6)

Notice that there are six complex phases in the effective NMM parameter: ζ1, ζ2 and ζ3 from
the NMM matrix; δ and two-Majorana phases from the leptonic mixing matrix. However, as
noticed in Ref. [29], it is clear that only three of these six complex phases are independent.
To carry out our analysis [18], we choose the Dirac CP phase δ, and the two relative phases,
ξ2 = ζ3 − ζ1 and ξ3 = ζ2 − ζ1.

In reactor experiments, we initially have only an electron antineutrino flux and, therefore,
a1+ = 1 will be the only nonzero entry. With this initial condition, we get from Eq. (4) the
following expression for the effective Majorana NMM for reactor antineutrino experiments in
the flavor basis:

(µFR)2 = |Λµ|2 + |Λτ |2. (7)
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Figure 1. Allowed regions for the TNMM, at 90 % CL, obtained from TEXONO data. The two-
dimensional regions (|Λi|, |Λj |) have been computed by marginalizing over the third component,
|Λk|. For the purple (outer) region we have fixed the phases to be δ = 0 and ξ2 = ξ3 = 0 (see
Eq. (9)), while in the magenta (middle) region we have set δ = 3π/2 and ξ2 = ξ3 = 0. The
orange (inner) region corresponds to δ = 3π/2, ξ2 = 0 and ξ3 = π/2.

On the other hand, for the mass basis, we have the expression

(µMR )2 = |Λ|2 − s212c213|Λ2|2 − c212c213|Λ1|2 − s213|Λ3|2 (8)

− 2s12c12c
2
13|Λ1||Λ2| cos δ12 − 2c12c13s13|Λ1||Λ3| cos δ13

− 2s12c13s13|Λ2||Λ3| cos δ23,

with cij = cos θij , sij = sin θij . The phases in this equation depend on the three independent
CP phases already mentioned: δ12 = ξ3, δ23 = ξ2 − δ, and δ13 = δ12 − δ23. The dependence on
these CP phases is very interesting and adds an extra complexity to the interpretation of the
experimental constraints. For instance, in the particular case where all the independent phases
vanish, i.e, δ12 = δ23 = δ13 = 0, the effective Majorana NMM in Eq. (8) is given by

(µMR )2 = |Λ|2 − (c12c13|Λ1|+ s12c12c13|Λ2|+ s13|Λ3|)2. (9)

It is easy to notice that if we also impose the conditions

|Λ1| = c12c13|Λ|, |Λ2| = s12c13|Λ|, |Λ3| = s13|Λ|, (10)

(µMR )2 cancels exactly and, hence, in this case reactor experiments would not be sensitive to this
parameter. This is illustrated in Fig. 1.

A similar situation will appear in accelerator experiments such as the LAMPF [23] and
LSND [24], where a dependence on the CP phases will appear [18].

On the other hand, in solar neutrino experiments like Borexino [19], the effective NMM
parameter in the mass basis is given by

(µMsol)
2 = |Λ|2 − c213|Λ2|2 + (c213 − 1)|Λ3|2 + c213P

2ν
e1 (|Λ2|2 − |Λ1|2), (11)

where we have defined the effective two-neutrino oscillation probabilities as P 2ν
e1,e2. Due to the

loss of coherence, the effective NMM measured from the solar neutrino flux is independent of
any phase, a fact already noticed in [16]. Notice also that the analysis presented here takes into
account the non-zero value of the reactor angle θ13 [18].
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Figure 2. Allowed regions, at 90 % CL, for the TNMM [18]. The magenta region shows the
constraints from reactor and accelerator data when all the phases vanish, except for δ = 3π/2.
The turquoise zone shows the corresponding bounds from the Borexino data that are phase-
independent.

3. Analysis of the neutrino data

We perform a combined analysis of the experimental data in order to get constraints for the
three different TNMM components Λi. In order to carry out the statistical analysis we use the
following χ2 function:

χ2 =
Nbin∑
i=1

(
Oi −N i(µ)

∆i

)2

, (12)

where Oi and N i are the observed number of events and the predicted number of events in
the presence of an effective NMM, µ, at the i-th bin, respectively. Here ∆i is the statistical
error for each bin. In our analysis, we have included the experimental results reported by
Krasnoyarsk [20], Rovno [21], MUNU [22], and TEXONO [14] reactor experiments. We have
also included the experimental data reported by the LAMPF [23] and LSND [24] collaborations,
as well as the most recent measurements of the Beryllium solar neutrino flux reported in Ref. [19]
by Borexino.

We perform a complete analysis taking into account the role of the CP phases in the reactor
and accelerator data. For the particular case of reactor neutrinos, we have carried out a statistical
analysis of TEXONO data [14] taking different values of the complex phases of Λi, ζi, and taking
all nonzero TNMM amplitudes. The result of this analysis is shown in Fig. 1. Notice that the
resulting restrictions on the TNMM |Λ1| and |Λ2| depend on the chosen CP phase combinations.

Finally, we carried out a combined analysis [18] of all the reactor and accelerator data for
a particular choice of phases (δ = 3π/2 and ξi = 0) and compared it with the corresponding
χ2 analysis obtained from the Borexino data. The results, shown in Fig. 2, illustrate how
Borexino [19] is more sensitive in constraining the magnitude of the TNMM. We stress that the
Borexino effective NMM depends only on the square magnitudes of these TNMM and hence, its
constraints are almost the same as those in the one-parameter-at-a-time analysis. On the other
hand, future reactor and accelerator experiments are the only ones that could give information on
individual TNMMs as well as on the Majorana phases discussed here, an information inaccessible
to the Borexino experiment.
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4. Conclusions

In this short review, we have discussed the current status of the bounds on the transition neutrino
magnetic moments. These parameters are very important, because they encode the Majorana
CP phases present both in the mixing matrix and in the NMM matrix. The conventional
neutrino magnetic moment emerges as a particular effective case. The Borexino solar experiment
plays a key role in constraining the electromagnetic neutrino properties due to the low energies
(below 1 MeV) which are probed as well as its robust statistics. Indeed, it provides the most
stringent constraints on the absolute magnitude of the transition magnetic moments. However,
the Borexino experiment can not probe the Majorana phases, due to the incoherent nature of
the solar neutrino flux. Although less sensitive to the absolute value of the transition magnetic
moment strengths, reactor and accelerator experiments provide the only chance to obtain a hint
of the complex CP phases, as illustrated in Fig. 1.
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