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Abstract.

Low energy threshold reactor experiments have the potential to give insight into the light
sterile neutrino signal provided by the reactor antineutrino anomaly and the gallium anomaly. In
this work we analyze short baseline reactor experiments that detect by elastic neutrino electron
scattering in the context of a light sterile neutrino signal. We also analyze the sensitivity of
experimental proposals of coherent elastic neutrino nucleus scattering (CENNS) detectors in
order to exclude or confirm the sterile neutrino signal with reactor antineutrinos.

1. Introduction

The reactor antineutrino anomaly [1] and the so called gallium anomaly [2, 3] are around 3o hints
that could not be explained in the context of the standard 3 neutrino oscillation picture. On the
other side experimental results of solar, atmospheric and accelerator neutrino experiments can
be very well explained by the standard 3 neutrino oscillation scheme [4], however the tension
produced by these anomalies could be solved by the existence of a sterile neutrino.

In this contribution we discuss our results on the analysis of reactor antineutrino electron
scattering data, including a sterile neutrino. The Texono [5], MUNU [6], Rovno [7] and
Krasnoyarsk [8] experiments provide the current measurement of antineutrino electron scattering
cross sections at very short baselines.

With the recent discovery of CENNS by the COHERENT Collaboration [9], there is new
interest in using CENNS experiments as a tool to probe the Standard Model, making possible the
study of neutrino magnetic moment, neutrino non standard interactions, among other interesting
neutrino properties, and as we propose in this work of sterile neutrinos.

We analyze the potential of the antineutrino neutrino electron scattering and CENNS at
reactor experiments, as alternatives to the detection by inverse beta decay (IBD) where the
rector anomaly has been reported. This work is mainly based on [10], the authors refer the
reader to it for any further details and for updated versions.
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2. The 341 neutrino oscillation scheme
The survival probability in the 3+1 neutrino oscillation scheme for short baseline 7, can be
approximated as

) ) Am2 L
ng—j’_l;l76 — sin? 20, sin? <TE471> ) (1)
where
sin? 20ce = 4|Ues*(1 — |Uea]?), (2)

the two oscillation parameters that can be studied in short baseline reactor neutrinos are sin® 26,
and Am?,.

3. Antineutrino electron scattering measurement
The differential cross section for the antineutrino scattering off electrons, at tree level can be
written as [11]
do QG%me
dT

T T
gr+91(1 - E—y)2 9Ly | (3)
m, is the electron mass, G is the Fermi constant, and g7, = 1/2 +sin? Oy, gr = sin® Oy are the
Standard Model couplings. When we perform a chi squared analysis of the current neutrino-
electron data [5, 6, 7, 8], and using the most recent predictions for the reactor neutrino flux [12]
we find that due to huge uncertainties the exclusion region in the 341 oscillation parameter
space is not competitive with current global fits. However this is enough to constrain part of
the region allowed by the gallium anomaly [2, 3] .

Future measurements from the GEMMA experiment[13] could be very useful to constrain the
sterile signal using the antineutrino electron scattering as detection reaction.

4. Sensitivities of CENNS reactor experiments to sterile neutrinos

The coherent elastic neutrino nucleus scattering is a standard model prediction and was proposed
in the early seventies by Freedman [14, 15]. In the last few decades several experimental
collaborations have been in the quest towards its detection [16, 17, 18, 19], recently it was finally
achieved by the first time by the COHERENT experiment using neutrinos from a spallation
source.

Table 1. List of CENNS experiments analyzed, reactor composition, energy threshold and
baseline.

25U Ppu 2BU Pu Tipres Baseline

TEXONO(lkg) [16] 0.55 0.32 0.7 0.06 100cV 28 m

RED100 [20] 0.54  0.33 0.07  0.06 500 eV 19 m
MINER [18] 1.0 - - - 10eV  13m
CONNIE [17] ~1.0 — - - 50eV  30m

The cross section for CENNS is given by

do \“" _ GEM | MT (T 2
dl' )y~ 27 E?
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Figure 1. Exclusion regions for the RED100 proposal with a baseline of 15(19) m. The solid
(green) line correspond to a detector with 100% efficiency and the dashed (red) lines a 50%
efficiency. The current best fit point for the sterile analysis is shown as a reference [10].

G ins the Fermi constant, M is the nucleus mass, F, the antineutrino energy and 7" the recoil
energy in the nucleus. The neutral current vector couplings are [21]

1
& = N <§ - 2/%VN§QZ> +ouk pogult o \dE 4 AR

1
gy = —geon A A 20 o), (5)
where pl¢ = 1.0082, §% = sin? y = 0.23126, A,n = 0.9972, \“I = —0.0031, A4 = —0.0025,
and M =2 v = 7.5 x 1075 [22].
We calculate the number of expected events in each detector, by

M . Eymax Trmax (EV) do_ coh
NS = ton e [ pit, g, [ (G (6)
min SM

vmin

in the above equation, Myetector 1S the detector mass, ¢g the incoming neutrino flux and ¢ period
of time the experiment is working data recording, A(E,) accounts for he neutrino spectrum, F,
is the neutrino energy, and 7' recoil energy of the nucleus. PfaBiya = 1 is the SM case and the
3 + 1 oscillation is given by Eq. (1).

The nuclear recoil energy can have a maximum value depending on the neutrino energy and

its mass
Twax(Ey) = 2E% /(M + 2E,). (7)

We will assume one year of data taking and compare statistically the case of no oscillations,
P,/ngya = 1 the one in Eq. (1). We will use the prescriptions for the experiments summarized in
Table (1) with one year of data taking. We show in Fig. (1) the case of the RED100 experiment
with two different baselines and two possible efficiencies. The expectative to improve current
constraints sterile neutrino mixing is very promising.

In Fig(2) we compare the antineutrino rate measured if a 5% decrease in the 23°U is
considered [23] (without sterile neutrino) versus the expected ratio assuming a sterile neutrino
Am? = 1.7 eV 2 and sin%20.. = 0.062 [24]. It is illustrated how experiments with different
baselines, thresholds, and fuel proportions can discriminate possible explanations of the reactor

anomaly.
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Figure 2. Ratios R of predicted to expected rates for different proposed CENNS experiments.
Black dots show the expected ratio for the case of a sterile neutrino with sin® 6. = 0.062 and
Am? = 1.7 eV. The blue dots give the ratio for the case of a decrease in the 23°U of 5% [23].
The black and dotted lines represent the average probabilities for a mean energies of 4 MeV,
and 6.5 MeV and o = 15% of resolution. The error bars take into account the statistical errors.

5. Conclusions

In this contribution we obtain an exclusion region to the mixing of a sterile neutrino from
reactor antineutrino electron scattering data. We analyze the TEXONO, Rovno, MUNU and
Krasnoyarsk experiments taking into account the most recent theoretical prediction of the reactor
neutrino flux. We find that given the poor statistics the limit is not competitive with the current
best fit point of sterile neutrinos but it is possible to exclude part of the region allowed by the
gallium anomaly. We also study the future sensitivity of some CENNS experiments, using
reactor neutrinos and we find that CENNS experiments could provide a way to finally discover
or rule out the existence of a sterile neutrino.
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