
J
H
E
P
1
0
(
2
0
1
7
)
1
7
5

Published for SISSA by Springer

Received: August 10, 2017

Revised: September 22, 2017

Accepted: October 17, 2017

Published: October 25, 2017

One-loop Parke-Taylor factors for quadratic

propagators from massless scattering equations

Humberto Gomez,a,b Cristhiam Lopez-Arcosb and Pedro Talaverac

aNiels Bohr International Academy and Discovery Center, University of Copenhagen,

Blegdamsvej 17, DK-2100 Copenhagen, Denmark
bUniversidad Santiago de Cali, Facultad de Ciencias Basicas,
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1 Introduction

Our most accurate knowledge on quantum field theory in Minkowski (3 + 1)-d is almost

entirely based on perturbation methods. At leading order, quantities such as scattering

amplitudes are computed by adding tree-like diagrams. Even this elementary manipu-

lation becomes a formidable task at rather low multiplicity kinematics and become only

technically feasible by using the Weyl-van der Waerden spinor calculus.

The use of on-shell methods for the calculation of scattering amplitudes has come

into attention since the last decade, following Witten’s seminal work [1]. A remarkable

development following these ideas is the approach by Cachazo-He-Yuan (CHY) [2, 3], it

has the great advantages of being applicable to several dimensions and also to a large array
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of theories [4–7], even beyond field theory [8, 9]. The main ingredient for this approach are

the tree-level scattering equations [2]

Ea :=
∑
b 6=a

ka · kb
σab

= 0, σab := σa − σb, a = 1, 2, . . . , n, (1.1)

where the σa’s denote punctures on the sphere. The tree-level S-matrix can be written in

terms of contour integrals localized over solutions of these equations on the moduli space

of n-punctured Riemann spheres

An =

∫
Γ
dµtree

n ICHY
tree (σ), (1.2)

where the integration measure, dµtree
n , is given by

dµtree
n =

∏n
a=1 dσa

Vol (PSL(2,C))
×

(σijσjkσki)∏n
b 6=i,j,k Eb

(1.3)

and the contour Γ is defined by the n− 3 independent scattering equations

Eb = 0, b 6= i, j, k . (1.4)

The integrand, ICHY
tree , depends on the described theory. There are other approaches that

use the same moduli space [1, 10–12], but restricted to four dimensions.

There have been developed several methods to evaluate the integrals, from different

perspectives. Some approaches study the solutions to the scattering equations for particular

kinematics and/or dimensions [4, 13–19], others work with a polynomial form [20–29], or

formulating sets of integration rules [30–34]. A different approach was proposed in [35],

taking the double covered version of the sphere, the so called Λ-algorithm, which we will

employ in this work.

A generalization for loop level of the CHY formalism has been made. The ambitwistor

and pure spinor ambitwistor worldsheet [36, 37] provided a prescription for a generaliza-

tion to higher genus Riemann surfaces [38–40]. A different approach was also developed

in [41–43], where the forward limit with two more massive particles, playing the role of

the loop momenta, were introduced. The scattering equations for massive particles were

already studied in [44, 45]. Another alternative approach using an elliptic curve was de-

veloped in [46, 47].

The previous prescriptions give a new representation of the Feynman integrals with

propagators linear in loop momenta. In order to find the equivalence with the usual Feyn-

man propagators, (` + K)−2, two additional steps must be taken: the first one is the use

of partial fractions, and the second one is the shifting of loop momenta [39, 48].

Recently, one of the authors [49] proposed a different approach to obtain the quadratic

Feynman propagators directly from the CHY-integrands for the scalar Φ3 theory.1 The mo-

tivation came by analysing a Riemann surface of genus two after an unitary cut, which look

exactly like a tree level diagram before the forward limit, but instead of the two massive

1There are some overlapping ideas with the recent paper published by Farrow and Lipstein [50].
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particles associated to the loop momenta there are four massless particles. This new ap-

proach allows to work again with the scattering equations for massless particles, but at the

expenses of increasing the number to n+ 4. In addition there is also the need to introduce

a new measure of integrations that guarantees the cut and then take the forward limit.

In the present work, we follow the line of thought of [49] and propose a reformulation

for the one-loop Parke-Taylor factors. Splitting the massive loop momenta (`+, `−) into

the four massless ones ((a1, b1), (b2, a2)), we will have one-loop Parke-Taylor factors that

will enter into CHY-integrands to lead directly to the usual Feynman propagators. The

CHY-integrands in question are the ones for the Bi-adjoint Φ3 scalar theory.

Outline. This paper is organized as follows. In section 2 we present our reformulation

of the one-loop Parke-Taylor factors (PT). The expression is written in terms of the gen-

eralized holomorphic one-form on the Torus, ωa:b
i:j . By exploiting algebraic identities we

formulate the Theorem 1: each term in the PT factors can be decomposed into terms

containing at least two ωa:b
i:j factors, i.e. the PT factors are rearranged in an expansion

manifestly tadpole-free.2

In section 3 we write, classify and match with their Feynman integrands counterparts,

some general type of CHY-integrands that can appear at one-loop level. Since we are

working with n+ 4 massless particles, the contour integrals can be calculated using any of

the existing methods of integration. As we have mentioned already we employ the so-called

Λ-algorithm, with the choice of a new gauge fixing, to solve them. This allows to analyt-

ically evaluate arbitrary CHY-integrals using simple graphical rules. The classification is

made tracing the structures defined in section 2. As will become clear each element inside

the partial amplitude have an unambigous correspondence with the elements of the CHY-

graphs, starting with the n-gon, then following with the ones with tree level structures

attached to their corners.

Section 4 shows our proposal for the partial amplitude of the Bi-adjoint Φ3 theory at

one-loop with quadratic propagators: first we give a simple review at tree level and one-loop

with linear propagators, then we propose our formula using our definition for the PT factors.

In order to support our proposition in section 5 we perform explicitly the calculation

for the partial amplitudes of the three and four-point functions. We make an extensive use

of the results of previous sections. In particular we emphasize the direct interpretation of

the CHY-integrals in terms of Feynman diagrams. This mapping is codified in the following

equality at the integrand level

1
2N+1

∫
dΩ× sa1b1 ×

∫
dµtree

N+4

��

��

��

��

1

2 3

n - 2

Ntree-1tree-1

tree-2

tree-n

=

��

��

��

��

� l
1

2

3

N

Pn

tree-1

tree-n

tree-2

2As it will be explained, the number of ωa:bi:j is related with the polygon of the loop, for example, two

ωa:bi:j in the left integrand can only generate a bubble or a triangle.
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that constitutes one of the most important results of this work and it will be explained in

detail during the course of this paper.

In section 6 we comment on the issue of the external-leg bubble contributions. Dia-

grams involved are singular and need to be regularized. Next section, 7, is for illustrative

purposes and is devoted to the iε prescription and how to directly obtain it by dimension

reduction. Finally, in section 8 we conclude by summarizing our findings.

For not disrupting the line of the paper more technical discussions have been gath-

ered in some appendices: in appendix A we explicitly show the sufficient form of the

measure (3.5) to tackle the one-loop CHY-integral prescription. In particular how the mo-

menta combination it contains arrises. Proof of Theorem 1 is casted in appendix B where

it is discussed at length. Appendix C collects the relation between some techniques devel-

oped across the paper and the linear propagator prescription. We conclude by probing an

statement of [47].

Before beginning section 2, we define the notation that is going to be used in the paper.

Notation. For convenience, in this paper we use the following notation

σij := σi − σj , ωa:b
i:j :=

σab
σia σjb

. (1.5)

Note that ωa:b
i:j are the generalization of the (1, 0)-forms used in [51] to write the CHY-

integrands at two-loop. In addition, we define the σab’s and ωa:b
i:j ’s chains as

(i1, i2, . . . , ip) :=σi1i2 · · ·σip−1ipσipi1 , (1.6)

(i1, i2, . . . , ip)
a:b
ω :=ωa:b

i1:i2 · · ·ω
a:b
ip−1:ipω

a:b
ip:i1

=ωa:b
i1:i1 · · ·ω

a:b
ip−1:ip−1

ωa:b
ip:ip ,

(iσ1 , i
σ
2 , . . . , i

ω
m, i

σ
m+1, . . . , i

ω
n , . . . i

σ
p )a:b :=σi1i2σi2i3 · · ·ωa:b

imim+1
σim+1im+2 · · ·ωa:b

inin+1
· · ·σip−1ipσipi1 .

In order to have a graphical description for the CHY-integrands on a Riemann sphere

(CHY-graphs), it is useful to represent each σa puncture as a vertex, the factor 1
σab

as a

line and the factor σab as a dashed line that we call the anti-line. Additionally, since we

often use the Λ-algorithm3 [35] we introduce the color code given in figure 1 and 2 for a

mnemonic understanding.

Finally, we introduce the momenta notation

k{a1,...,am} = [a1, . . . , am] :=
m∑
i=1

kai , sa1...am := k2
{a1,...,am}, ka1...am :=

m∑
ai<aj

kai · kaj .

3It is useful to recall that the Λ-algorithm fixes four punctures, three of them by the PSL(2,C) symmetry

and the last one by the scale invariance.
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massless puncture fixed by scale symmetry

unfixed massless puncture massless puncture fixed by PSL(2,C)

massive puncture fixed by PSL(2,C)

Figure 1. Vertex Color code in CHY-graphs for the Λ-algorithm.

1

σabσ

branch cut 

1factor

factor abσ

abσ

ba

a b

ba(line) 

(anti−line) 

(double line) factor
ab

Figure 2. Edges Color code in CHY-graphs for the Λ-algorithm.

2 Parke-Taylor at one-loop

In this section we define the PT factor at one-loop in the CHY prescription, which is totally

similar to ones given in [39, 42, 43]. After that, we carry out some manipulation in order

to write algebraic identities that will be very convenient to perform computations using

the Λ-algorithm.

Before defining the PT factor at one-loop, it is useful to remind that, at tree level in

the CHY approach, it is given by the expression

PTtree[π] =
1

(π1, π2, . . . , πn)
, (2.1)

where π is a generic ordering and n is the total number of particles.

Following the ideas presented in [42, 43], we formulate:

Definition. We define the Parke-Taylor factor at one-loop with ordering π as

PT a1:a2
1-loop[π] :=

∑
α∈cyc(π)

1

σα1α2σα2α3 · · ·σαn−1αn

ωa1:a2
αn:α1

(2.2)

= PTtree[π]
(
σπ1π2 ω

a1:a2
π1:π2 + σπ2π3 ω

a1:a2
π2:π3 + · · ·+ σπnπ1 ω

a1:a2
πn:π1

)
.

As it will be discussed later, the task of performing CHY-integrals using the PT defined

in (2.2) is not simple. The difficulty of these computations resides in the number of ωa1:a2
i:j ’s,

more ωa1:a2
i:j ’s imply that the singular solutions of the scattering equations do not contribute.

In fact, the minimum number of ωa1:a2
i:j ’s so the CHY-integrals become simpler is two, as

we are going to explain in section 3. Nevertheless, it is always possible to manipulate

algebraically PT a1:a2
1-loop[π] and to decompose it as a linear combination of terms that contain

at least two ωa1:a2
i:j ’s.

Theorem 1. The PT a1:a2
1-loop[π] factor, which was defined in (2.2), admits a power expansion

in ωa1:a2
i:j with two as its lowest power.

We shall only sketch some examples in order to illustrate this theorem, leaving the

complete, technical proof, together with the precise construction using the Schouten-like

identity for the σij ’s to the appendix B.
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The previous theorem allows to clarify, that the cancellations of the tadpoles in the bi-

adjoint Φ3 theory can follow directly from an algebraic property of the one-loop PT factors

and not necessarily from the anti-symmetry of the structure constant in the cubic vertex.

Before proceeding we shall introduce the following definitions:

D a1:a2
type−0[1, . . . , n]pω := (1, . . . , p)ωa1:a2

1:1 · · ·ωa1:a2
p:p + (2, . . . , p+ 1)ωa1:a2

2:2 · · ·ωa1:a2
p+1:p+1

+ · · ·+ (n, 1, . . . , p− 1)ωa1:a2
n:n ωa1:a2

1:1 · · ·ωa1:a2
p−1:p−1, (2.3)

with 1 < p ≤ n,
D a1:a2

type−I[1, . . . , n]pω := (1σ, . . . , pσ, (p+ 1)ω)a1:a2ωa1:a2
2:2 · · ·ωa1:a2

p:p (2.4)

+ (2σ, . . . , (p+ 1)σ, (p+ 2)ω)a1:a2ωa1:a2
3:3 · · ·ωa1:a2

p+1:p+1

+ · · ·+ (nσ, 1σ, . . . , (p− 1)σ, pω)a1:a2ωa1:a2
1:1 ωa1:a2

2:2 · · ·ωa1:a2
p−1:p−1,

with 1 < p ≤ n− 1,

D a1:a2
type−II[1, . . . , n]pω := (1σ, 2ω, 3σ, 4ω . . . , pω)a1:a2 + (2σ, 3ω, 4σ, 5ω . . . , (p+ 1)ω)a1:a2

+ · · ·+ (nσ, 1ω, 2σ, 3ω . . . , (p− 1)ω)a1:a2 , (2.5)

with p ∈
{

2, 4, 6, . . . ,
n

2

}
.

Notice, that we have defined the factors, D a1:a2
type−0, D a1:a2

type−I and D a1:a2
type−II, with the partic-

ular ordering {1, 2, . . . , n}, nevertheless, their definitions for another ordering are straight-

forward. These terms also carry the cyclic permutation invariance from the PT factor.

2.1 Examples

In this section we give some non-trivial examples in order to illustrate the above proposition.

The following identities are purely algebraic and they can be proven after a, somehow, direct

computation.

• Two-point

PT a1:a2
1-loop[1, 2] =

1

σ12
ωa1:a2

2:1 +
1

σ21
ωa1:a2

1:2 = PTtree[1, 2] D a1:a2
type−0[1, 2]2ω, (2.6)

where let us remind, D a1:a2
type−0[1, 2]2ω = (1, 2)ωa1:a2

1:1 ωa1:a2
2:2 .

• Three-point

PT a1:a2
1-loop[1, 2, 3] =

1

σ12 σ23
ωa1:a2

3:1 +
1

σ23 σ31
ωa1:a2

1:2 +
1

σ31 σ12
ωa1:a2

2:3

= PTtree[1, 2, 3]
[

2D a1:a2
type−0[1, 2, 3]3ω + D a1:a2

type−I[1, 2, 3]2ω
]

= PTtree[1, 2, 3]
[

D a1:a2
type−0[3, 2, 1]3ω + D a1:a2

type−I[3, 2, 1]2ω
]
. (2.7)
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• Four-point

PT a1:a2
1-loop[1, 2, 3, 4]

PTtree[1, 2, 3, 4]
= σ12 ω

a1:a2
1:2 + σ23 ω

a1:a2
2:3 + σ34ω

a1:a2
3:4 + σ41 ω

a1:a2
4:1

= 3D a1:a2
type−0[1, 2, 3, 4]4ω + 2D a1:a2

type−I[1, 2, 3, 4]3ω

+ D a1:a2
type−I[1, 2, 3, 4]2ω +

1

2
D a1:a2

type−II[1, 2, 3, 4]2ω

= D a1:a2
type−0[4, 3, 2, 1]4ω + D a1:a2

type−I[4, 3, 2, 1]3ω

+ D a1:a2
type−I[4, 3, 2, 1]2ω +

1

2
D a1:a2

type−II[4, 3, 2, 1]2ω. (2.8)

Note that the (1/2) factor in D a1:a2
type−II[4, 3, 2, 1]2ω comes from the fact there is a double

counting, i.e.

D a1:a2
type−II[4, 3, 2, 1]2ω = (4σ, 3ω, 2σ, 1ω)a1:a2 + (3σ, 2ω, 1σ, 4ω)a1:a2

+ (2σ, 1ω, 4σ, 3ω)a1:a2 + (1σ, 4ω, 3σ, 2ω)a1:a2

= 2 [ (4σ, 3ω, 2σ, 1ω)a1:a2 + (3σ, 2ω, 1σ, 4ω)a1:a2 ] . (2.9)

3 One-loop Feynman integrands classification from CHY approach

The main goal of this section, following [49], is to classify some CHY-integrals at one-

loop. Notice that the one-loop CHY-integral prescription given in [49] has the particular

structure4

In =

∫
dD`

(2π)D
In ,

In :=
1

2n+1

∫
dΩ sa1b1

∫
dµtree

n+4

[
I a1:a2
L (σ)

(a1, b1, b2, a2)

]
×

[
I b1:b2
R (σ)

(a1, b1, b2, a2)

]
(3.1)

where n is the number of massless external particles and the dµtree
n+4 is the tree level measure

defined in [3]

dµtree
n+4 :=

∏n+4
A=1 dσA

Vol (PSL(2,C))
× (σ1b1 σb1b2 σb21)∏n+4

A 6=1,b1,b2
EA

fixing PSL(2,C)
−−−−−−−−−−−−−−−−→

dσa1
Ea1

× dσa2
Ea2

×
n∏
i=2

dσi
Ei
× (σ1b1 σb1b2 σb21)2, (3.2)

EA :=

n+4∑
B=1
B 6=A

kA · kB
σAB

= 0, A = 1, 2, . . . , n+ 4, (3.3)

with the identification

{kn+1, kn+2, kn+3, kn+4} := {ka1 , ka2 , kb1 , kb2},
{σn+1, σn+2, σn+3, σn+4} := {σa1 , σa2 , σb1 , σb2}, (3.4)

{En+1, En+2, En+3, En+4} := {Ea1 , Ea2 , Eb1 , Eb2}.
4For more details see appendix A.
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Figure 3. Loop box and triangle definition.

Notice that in (3.2), without loss of generality, we have fixed {σ1, σb1 , σb2} and {E1, Eb1 , Eb2}.
Additionally, let us remind the measure, dΩ, it is given by the expression5

dΩ := dD(ka1 +kb1) δ(D)(ka1 +kb1 − `) dDka2 dDkb2 δ(D)(ka2 +ka1) δ(D)(kb2 +kb1). (3.5)

This measure is introduced to take the forward limit of the four on-shell loop momenta.

The motivation comes because momenta will appear combined in a particular way after

the integration of the σA’s. In appendix A we give a more detailed explanation of how this

particular combination appears.

It is useful to recall that the integration over the σA’s variables is a contour integral,

which is localized over the solution of the scattering equations, i.e. EA = 0. In addition,

in this paper we are just interested to focus at the integrand level, in other words in In,

therefore we do not worry to write the measure dD`
(2π)D

.

The classification is going to be made by taking into account the CHY-integrands

appearing in the D a:b
type−∗ definitions given in (2.3), (2.4) and (2.5). i.e.

I a1:a2
L (σ) = PTtree[1, 2, . . . , n]×D a1:a2

type−∗[n, n− 1, . . . , 1],

I b1:b2
R (σ) = PTtree[1, 2, . . . , n]×

(
σ12 ω

b1:b2
1:2

)
.

In order to not saturate the notation on the CHY-graphs, we introduce the definition

given in figure 3.

3.1 One loop integrands classification

As it is going to be checked in section 5, the terms D a:b
type−∗’s have a physical meaning, as

there is a relation between them and Feynman diagrams. Basically, the number of ωa1:a2
i:j ’s in

Ia1:a2
L = PTtree[1, 2, . . . , n]×D a1:a2

type−∗[n, n− 1, . . . , 1]

corresponds to the number of legs attached to the loop in the Feynman diagram, and the

term in

Ib1:b2
R = PTtree[1, 2, . . . , n]×

(
σij ω

b1:b2
i:j

)
with a single ωb1:b2

i:j will be in charge of its ordering. In fact, the CHY-integrand, I
a1:a2
L ×Ib1:b2

R

(a1,b1,b2,a2)2
,

can be represented as a linear combination of the three CHY-graphs given in figure 4.

In particular, in figure 5 we consider the simplest cases.

5In this paper we are considering that the D-dimensional momentum space is real, i.e. ki ∈ RD−1,1.

Therefore, the Dirac delta functions in (3.5) are well defined.
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TREE
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-n
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CHY

-3
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CHY

-2
TREE

CHY

(a)

1

2

3

n

n-3

1-1
TREE

CHY

1-n
TREE

CHY

1-3
TREE

CHY

1-2
TREE

CHY

(b)

1

3

n

2

n-3

11-1
TREE

CHY

11-n
TREE

CHY

11-3
TREE

CHY

11-2
TREE

CHY

(c)

Figure 4. Fundamental CHY-Integrands at one-loop.

1

2

3

n

n-2

(I)

1

2

3

n

n-3

(II)

1

3

n

2

n-3

(III)

Figure 5. Simplest cases of CHY-graphs from figure 4.

In order to apply the Λ-algorithm to integrate the CHY-graphs in figure 5, we have

fixed the punctures {σ1, σb1 , σb2} by the PSL(2,C) symmetry and the puncture {σa1} by

the scale symmetry [35]. Clearly, we are using a different gauge than the one introduced

in [49]. This new gauge will allows us to work à la Feynman, i.e. each cut on the CHY-graph

becomes a Feynman propagator, quadratic in momenta.

The CHY-graphs in figure 5 come from the following set of integrands

(I) =
PTtree[1, . . . ,n]Da1:a2

type−0[n, . . . ,1]nω×PTtree[1, . . . ,n]σ12ω
b1:b2
1:2

(a1, b1, b2,a2)2
(3.6)

=
(n,n−1, . . . ,1)×ωa1:a2

1:1 ωa1:a2
2:2 · · ·ωa1:a2

n:n ×σ12ω
b1:b2
1:2

(a1, b1, b2,a2)2×(1,2, . . . ,n)×(1,2, . . . ,n)
:= ICHY

(I) [1, . . . ,n]1:2+· · · ,

(II) =
PTtree[1, . . . ,n]Da1:a2

type−I[n, . . . ,1](n−1)ω×PTtree[1, . . . ,n]σ12ω
b1:b2
1:2

(a1, b1, b2,a2)2

= · · ·+ (1σ,nσ . . . ,3σ,2ω)a1:a2×ωa1:a2
3:3 · · ·ωa1:a2

n:n ×σ12ω
b1:b2
1:2

(a1, b1, b2,a2)2×(1,2, . . . ,n)×(1,2, . . . ,n)
:= ICHY

(II) [1, . . . ,n]1:2+· · · ,

(III) =
PTtree[n, . . . ,1]Da1:a2

type−I[1, . . . ,n](n−1)ω×PTtree[1, . . . ,n]σ12ω
b1:b2
1:2

(a1, b1, b2,a2)2

= · · ·+ (2σ, . . . ,nσ,1ω)a1:a2×ωa1:a2
3:3 · · ·ωa1:a2

n:n ×σ12ω
b1:b2
1:2

(a1, b1, b2,a2)2×(1,2, . . . ,n)×(n,n−1, . . . ,1)
+· · · := ICHY

(III) [1, . . . ,n]1:2+· · · ,
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where ellipsis stand for additional terms with the same structure6 as those given in the

graphs of figure 4.

Bearing in mind that the Λ-algorithm is able to solve the CHY-graphs up to an overall

sign the first point to tackle is how to fix this ambiguity.7 Let us consider the integrands,

ICHY
(I) [1, . . . , n]1:2, ICHY

(II) [1, . . . , n]1:2 and ICHY
(III) [1, . . . , n]1:2 above. Pulling out the common

factors they become

ICHY
(I) [1, . . . ,n]1:2 = (−1)

[
(−1)n+1 σn−2

a1a2

σ2
a1b1

σ2
a2b2

σb1b2
× 1∏n

i=1σia1σia2

× 1

σ1b1σ2b2σ23 · · ·σn1

]
, (3.7)

ICHY
(II) [1, . . . ,n]1:2 = (−1)

[
(−1)n+1 σn−3

a1a2

σ2
a1b1

σ2
a2b2

σb1b2
× 1

σ1a2
σ2a1

∏n
i=3σia1

σia2

× 1

σ1b1σ2b2(1, . . . ,n)

]
,

ICHY
(III) [1, . . . ,n]1:2 = (−1)

[
(−1)n+1 σn−3

a1a2

σ2
a1b1

σ2
a2b2

σb1b2
× 1

σ1a1
σ2a2

∏n
i=3σia1

σia2

× 1

σ1b1σ2b2(1, . . . ,n)

]
.

We claim that the terms in the square brackets have a direct representation in terms of

the CHY-graphs in figure 5.

In the following we make use of the Λ-algorithm to perform the set of integrals

ICHY
(I) [1, . . . , n]1:2, ICHY

(II) [1, . . . , n]1:2 and ICHY
(III) [1, . . . , n]1:2. The conjectured overall sign in-

side the brackets in (3.7), (−1)n+1, is checked numerically afterwards.8

Proposition 1. There is an equality among the CHY-integral of (I), (3.7), and the one-loop

n-point Feynman integrand

ICHY
(I) [1, . . . , n]1:2 :=

1

2n+1

∫
dΩ sa1b1

∫
dµtree

n+4 ICHY
(I) [1, . . . , n]1:2 =

l
1

2

3

4

5

6

n

(3.8)

Proof. The result follows from a direct calculation,

ICHY
(I) [1, . . . , n]1:2 =

1

2n+1

∫
dΩ× sa1b1 ×

∫
dµtree

n+4 ICHY
(I) [1, . . . , n]1:2

=
(−1)

2n+1

∫
dΩsa1b1

∫
dµtree

n+4

[
(−1)n+1 σn−2

a1a2

σ2
a1b1

σ2
a2b2

σb1b2
× 1∏n

i=1 σia1σia2
× 1

σ1b1σ2b2σ23 · · ·σn1

]

=
(−1)

2n+1

∫
dΩ sa1b1

∫
dµtree

n+4

1

2

3

n

n-2 , (3.9)

6Sometimes, it is necessary to manipulate the integrand to obtain the CHY-graphs in figure 4.
7Notice that the overall sign can be fixed by the technique developed in [33], where the anti-lines have

been considered.
8For the numerical checking we have fixed the punctures and scattering equations, {(σ1, E1), (σ2, E2),

(σ3, E3)}, namely, the Faddeev-Popov determinant becomes (σ12σ23σ31)2.
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where in the last step we have mapped each element in the expression inside the bracket

to the CHY-graph: the first factor is the box, namely the loop momenta sector, the second

one is in charge of connecting the loop momenta to all the external points, and the third

factor is the one that gives the ordering. With these identifications all the integrands of

this type will look alike but with the external points permuted.

In order to compute the
∫
dµtree

n+4 integral within the Λ-algotithm [35], we introduce

the “nearest neighbour” gauge fixing. One can show that it is necessary to perform a total

of (n+ 1)-consecutive cuts, each one introducing a single propagator, like in the Feynman

diagrams. For instance, using the Λ-rules, there is only one non zero cut on the CHY-graph

in (3.9), as it is shown on left graph in (3.10).

1

2

3

n

n-2

cut-1

=
1

ka1b1
×


n - 2

1

n

3

2
1�

[

[

1��
cut-2


. (3.10)

This first cut gives the factor 1
ka1b1

and the resulting CHY-graph contains now a massive

puncture with momentum, ka1 +kb1 , which is connected with a double line to the puncture

σ1. By scale symmetry we fix the nearest neighbour to σ1 (next to its right), i.e. σn, such

as it is shown on right graph in (3.10), see also figure 3.

The resulting CHY-graph in (3.10) contains also only one non zero cut, which we have

dubbed cut-2. This cut is simple to compute and its result is given by

n - 2

1

n

3

2

1�

[

[

1��

cut-2

=
1

k234···na2b2
×


n - 3

n- 1

1

n

3

2

1�

[

[

1��
�

cut-3


, (3.11)

where clearly the resulting graph keeps the same form but with one less puncture. Iterating

(n− 2) times this procedure we are led with

1

2

3

n

n-2

cut-1

=
1

ka1b1×k234···na2b2×· · ·×k2a2b2

×

 2

3n11�

[[
1�� �� �� � ��

2
� 2

�

cut-(n+1)

 (3.12)
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This final resulting graph has just one non-zero cut, as it is shown in (3.12), which we have

called “cut-(n+1)” and its result by the Λ-rules is 1
ka2b2

.

Summarizing, so far we have proven the equality

∫
dµtree

n+4

1

2

3

n

n-2 =
2n+1

sa1b1 × s1a1b1 × s1na1b1 × · · · × s1n(n−1)···3a1b1 × sa2b2
,

where the momentum conservation condition,
∑n

i=1ki+ka1+ka2+kb1+kb2 =0, has been used.

Carrying out the last integration,
∫
dΩ×sa1b1 , we are left with the following expression

1

2n+1

∫
dΩ×sa1b1×

2n+1

sa1b1×s1a1b1×s1na1b1×·· ·×s1n(n−1)···3a1b1×sa2b2

=
1

`2(`+k1)2(`+k1+kn)2(`+k1+kn+kn−1)2 · · ·(`+
∑n

i,i 6=2 ki)
2

=

l
1

2

3

4

5

6

n

,

where we have finally identified the algebraic expression with the pictorical one-loop n-

point Feynman integrand. This equality, which corresponds to our initial claim, has also

been checked numerically. �

As a final remark for this first proposition, we can generalize the previous calculation

to the case of attaching CHY tree-level graphs instead of points as in (3.9). Schematically

it is

1

2N+1

∫
dΩ× sa1b1

∫
dµtree

N+4

1

2

3

n

n-2

-1
TREE

CHY

-n
TREE

CHY

-3
TREE

CHY

-2
TREE

CHY

=

l

-6
TREE
FEY

-5
TREE
FEY

-4
TREE
FEY

-3
TREE
FEY

-2
TREE
FEY -n

TREE
FEY

-1
TREE
FEY

, (3.13)

where N is the total number of external particles. The gluing process to join the CHY

tree-level graphs at the one-loop skeleton can be found in [46, 51]. These kind of graphs

can be solved in the same fashion as we did for the n-point case.

Proposition 2. The CHY-integral of (II), (3.7), identically vanishes.

ICHY
(II) [1, . . . , n]1:2 :=

1

2n+1

∫
dΩ× sa1b1 ×

∫
dµtree

n+4 ICHY
(II) [1, . . . , n]1:2 = 0 . (3.14)
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Proof. As in the previous case, the proof is straightforward, but a little tedious.

ICHY
(II) [1, . . . , n]1:2 =

1

2n+1

∫
dΩ× sa1b1 ×

∫
dµtree

n+4 ICHY
(II) [1, . . . , n]1:2

= −
∫

dΩ

2n+1
sa1b1

∫
dµtree

n+4

[
(−1)n+1 σn−3

a1a2

σ2
a1b1

σ2
a2b2

σb1b2
× 1

σ1a2
σ2a1

∏n
i=3 σia1

σia2

× 1

σ1b1σ2b2(1, . . . , n)

]

=
(−1)

2n+1

∫
dΩ sa1b1

∫
dµtree

n+4

1

2

3

n

n-3 . (3.15)

Applying the Λ-rules on the graph in (3.15) to compute the integral,
∫
dµtree

n+4, one

obtains that there is just one non-zero cut

1

2

3

n

n-3

cut-1

=
1

ka1b1
×


n - 3

1

n

3

2

1�

[

[

1��


. (3.16)

Furthermore all possible cuts on the resulting CHY-graph in (3.16) are zero, therefore

one can conclude that the integral, ICHY
(II) [1, . . . , n]1:2, vanishes, i.e.

ICHY
(II) [1, . . . , n]1:2 =

(−1)

2n+1

∫
dΩ sa1b1

∫
dµtree

n+4

1

2

3

n

n-3 = 0 . � (3.17)

This calculation can be generalized to the case of attaching CHY tree-level graphs

instead of points. Schematically it is

∫
dΩ sa1b1

∫
dµtree

N+4

1

2

3

n

n-3

1-1
TREE

CHY

1-n
TREE

CHY

1-3
TREE

CHY

1-2
TREE

CHY

= 0 , (3.18)

where N is the total number of external particles. These type of graphs, with tree-level

CHY-graphs attached, can be solved in a similar way as we did for the case in (3.17).
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Proposition 3. There is a correspondence between the CHY-integral of (III), (3.7), and

the one-loop n-point Feynman integrand

ICHY
(III) [1, . . . , n]1:2 :=

1

2n+1

∫
dΩ sa1b1

∫
dµtree

n+4 ICHY
(III) [1, . . . , n]1:2 = (−1)

l
1

2

3

4

5

6

n

(3.19)

Proof. The result follows from a direct calculation,

ICHY
(III) [1, . . . , n]1:2 =

1

2n+1

∫
dΩ× sa1b1 ×

∫
dµtree

n+4 ICHY
(III) [1, . . . , n]1:2

=
(−1)

2n+1

∫
dΩsa1b1

∫
dµtree

n+4

[
(−1)n+1 σn−3

a1a2

σ2
a1b1

σ2
a2b2

σb1b2
× 1

σ1a1
σ2a2

∏n
i=3 σia1

σia2

× 1

σ1b1σ2b2(1, . . . , n)

]

=
(−1)

2n+1

∫
dΩ sa1b1

∫
dµtree

n+4

1

3

n

2

n-3 . (3.20)

To compute this integral we use the previous results together with the cross-ratio identity

1 = −σ12 σa1a2
σ1a2σ2a1

+
σ1a1σ2a2

σ1a2σ2a1

. (3.21)

It is straightforward to check that by multiplying the CHY-integrand (or graph) in (3.20)

times the above identity and using Proposition 2, the integral, ICHY
(III) [1, . . . , n]1:2, becomes

ICHY
(III) [1, . . . , n]1:2 =

1

2n+1

∫
dΩ× sa1b1 ×

∫
dµtree

n+4 ICHY
(III) [1, . . . , n]1:2 × 1

= −ICHY
(I) [1, . . . , n]1:2 + ICHY

(II) [1, . . . , n]1:2

= −ICHY
(I) [1, . . . , n]1:2 , (3.22)

and consequently

1

2n+1

∫
dΩ× sa1b1

∫
dµtree

n+4

1

3

n

2

n-3 = (−1)

l
1

2

3

4

5

6

n

� (3.23)
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This result can also be generalized for external CHY tree graphs. Schematically it is

1

2N+1

∫
dΩ× sa1b1

∫
dµtree

N+4

1

3

n

2

n-3

11-1
TREE

CHY

11-n
TREE

CHY

11-3
TREE

CHY

11-2
TREE

CHY

= (−1)

l

-6
TREE
FEY

-5
TREE
FEY

-4
TREE
FEY

-3
TREE
FEY

-2
TREE
FEY -n

TREE
FEY

-1
TREE
FEY

, (3.24)

where N is the total number of external particles and again we can solve these type of

CHY-graphs like we have done in the previous cases.

Now that we have a classification for the type of integrands that will appear in our

calculations we can employ the results in the computation of the integrands for the Bi-

adjoint Φ3 scalar theory.

4 The bi-adjoint Φ3 scalar theory

The scattering amplitudes at tree level for the massless bi-adjoint Φ3 scalar theory are

given by the elements [4]

mtree
n [π|ρ] :=

1

2n−3

∫
dµtree

n ICHY
t [π|ρ] (4.1)

where

ICHY
tree [π|ρ] := PTtree[π]× PTtree[ρ] (4.2)

and the measure, dµtree
n , is given in (3.2).

In [4], it was shown that the integral, mtree
n [π|ρ], is composed by the sum over all

the trivalent Feynman diagrams containing two planar embeddings, consistent with the

π (ρ) ordering respectively.9 Specifically mtree
n [π|ρ] reduces to the sum over all elements

contained in the intersection among these two planar ordering. Schematically it can be

written as [4]

mtree
n [π|ρ] = (−1)n−3+nπ|ρmtree

n [π|π] ∩mtree
n [ρ|ρ] , (4.3)

where nπ|ρ is determined by the number of flips between two permutations π, ρ [4]. For

example, let us consider the element, mtree
4 [1234|1243], it reads

mtree
4 [1234|1243] = mtree

4 [1234|1234]∩mtree
4 [1243|1243] =

1 11

11

2 2

22

3

3

3

34

4

4

4

 =
1

2 3

4

(4.4)

9There are many techniques to compute mtree
n [π|ρ], such as ones given in [4, 18, 20, 24, 25, 29, 31–

33, 51, 52].
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which is the right answer. In the previous example one can appreciate the advantage

of (4.3), since the calculation for both orderings is exactly the same but with external

legs permuted to the given ordering. Therefore, we only have to do the full calculation in

the canonical ordering (i.e. (1,2,. . . ,n)). This will prove extremely useful for the one-loop

calculations.

4.1 Bi-adjoint Φ3 at one-loop

The CHY prescription to obtain the scattering integrands at one-loop, respecting the planar

orderings (π, ρ), is given by the elements

m1-loop
n [π|ρ] =

1

2n−1 `2

∫
dµ1-loop

n+2 ICHY
1-loop[π|ρ], (4.5)

where

ICHY
1-loop[π|ρ] :=

1

(`+, `−)2
×PT `+:`−

1-loop[π]×PT `+:`−
1-loop[ρ] (4.6)

and the measure dµ1-loop
n+2

dµ1−loop
n+2 :=

dσ`+dσ`−
∏n
a=1 dσa

Vol (PSL(2,C))
× (σ`+`− σ`−1 σ1`+)∏n

a=2E
1-loop
a

,

fixing PSL(2,C)
−−−−−−−−−−−−−−−−→

n∏
i=2

dσi

E1-loop
i

× (σ`+`− σ`−1 σ1`+)2 (4.7)

with

E1-loop
a :=

n∑
b=1
b 6=a

ka · kb
σab

+
ka · `+

σa`+
+
ka · `−

σa`−
, a = 1, . . . , n (4.8)

E1-loop
`± :=

n∑
b=1

`± · kb
σ`±b

, (`+)µ = −(`−)µ := `µ, `2 6= 0.

where, without loss of generality, we have fixed {σ`+ , σ`− , σ1} and {E1-loop
`+ , E1-loop

`− , E1-loop
1 }.

As it has been shown in [39, 42, 43], the CHY-integral in (4.5) reproduces the linear

propagators in the internal loop momentum `µ, i.e. in the Q-cut representation [53–55].

Therefore, as it is very well known, these results match with the traditional Feynman

propagators just after using the partial fraction identity and performing a shift in the loop

momentum.

4.2 A new proposal

In this section we propose a new CHY prescription for the S-matrix at one-loop of the

bi-adjoint Φ3 scalar theory, that takes into account the planar orderings. In this proposal

we will be able reproduce directly the quadratic propagators, in the same way as the

traditional Feynman approach.
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Borrowing the line of reasoning in [49] and the prescription (4.5) we arrive at:

Definition. The partial amplitude M1-loop
n [π|ρ] is given as

M1-loop
n [π|ρ] :=

1

2n+1

∫
dΩ× (ka1 + kb1)2 ×

∫
dµtree

n+4 ICHY
1-loop[π|ρ], (4.9)

with

ICHY
1-loop[π|ρ] := PT a1:a2

1-loop[π]× 1

(a1, b1, b2, a2)2
×PT b1:b2

1-loop[ρ]. (4.10)

We conjecture that the amplitude, M1-loop
n [π|ρ], reproduces the integrands of the S-

matrix elements at one-loop for the Φ3 bi-adjoint massless theory. We are going to present

several examples in order to support this statement.

Notice that despite the similarity among the prescriptions (4.5) and (4.9), there are

significant differences between them: i) The total number of punctures do not match,

namely in (4.5) there are n + 2 punctures, out of which two are massive, while in (4.9)

there are n + 4 massless punctures. ii) The scattering equations are neither the same,

although in [41] it was shown that the massive scattering equations in (4.8) can be obtained

from (3.3) after dimensional reduction. Additionally, iii) the final outcomes are different,

as it is going to be shown later, (4.5) produces linear propagators in `µ, while (4.9) is able

to reproduce the quadratic propagators as the traditional Feynman approach.

After some manipulations ICHY
1-loop[π|ρ] in (4.10) becomes

ICHY
1-loop[π|ρ] := PT a1:a2

1-loop[π]× 1

(a1, b1, b2, a2)2
×PT b1:b2

1-loop[ρ] (4.11)

=
∑

α∈cyc(π)

∑
β∈cyc(ρ)

PTtree(α1, . . . , αn, a1, b1, b2, a2)× PTtree(β1, . . . , βn, b1, a1, a2, b2).

As a consequence the integral,
∫
dµtree

n+4 ICHY
1-loop[π|ρ], is just a sum over trivalent tree level

planar Feynman diagrams. However, this is not a very efficient and useful way to proceed

because there is a large number of singular Feynman diagrams that do not contribute to

the partial Amplitude, i.e. these diagrams must cancel out among them.

For example, consider the CHY-integrand

ICHY
1-loop[1,2,3|1,2,3] = PTtree(1,2,3,a1, b1, b2,a2)×PTtree(1,2,3, b1,a1,a2, b2)+· · · (4.12)

where ellipsis stand for terms obtained under cyclic permutations. The CHY-graph for the

first term of the expansion in (4.12) is represented on the left hand side of figure 6.

The integral∫
dµtree

3+4 PTtree(1, 2, 3, a1, b1, b2, a2)× PTtree(1, 2, 3, b1, a1, a2, b2) ,

contains the sum over all possible trivalent planar Feynman diagrams, [4, 29, 31, 35],

that have been depicted with a grey circle and blue lines in figure 6(b). In particular,

in figure 7(a) we give one example. Clearly, by performing the
∫
dΩ sa1b1 integral of this

diagram, one obtains a tadpole, such as it is shown in figure 7(b). This singular diagram

must not contribute to the amplitude and therefore it cancels out with another one which

comes from the next contributions. This kind of analysis is tedious since the number of

tree level diagrams in (4.11) is large.
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(a)

3

2

1

1
�

1
�

2
�

2
�

(b)

Figure 6. (a) CHY-graph for the first term in (4.12). (b) All trivalent Feynman diagrams associ-

ated to the CHY-graph (The grey circle means the sum over all possible trivalent vertices.).

1 2

3

1
�

1
�

2
�

2
�

b1

1 2

3

sa1�Ω

l

Figure 7. One of all possible Feynman diagrams given in figure 6(b). Resulting tadpole after

making the forward limit, i.e. by integrating
∫
dΩ (ka1

+ kb1)2.

In order to handle this group of cancelling diagrams without going through the detailed

analysis described above, we shall rely on the findings of sections 2 and 3 to classify the

Feynman diagrams at one-loop from the CHY approach. In the next section we are going

to show several examples where this new technology is applied and the conjecture over

M1-loop
n [π|ρ] will be checked.

Finally, note that the method used in [42, 43] could be applied here with a small

variation: the off-shell momenta, `µ and −`µ, are split into two on-shell momenta, (kµa1 , k
µ
b1

)

and (kµa2 , k
µ
b2

), as is shown in figure 6.

5 Examples

In the following section we will use all the previous results to calculate the particular cases

n = 3 and n = 4. Since n = 3 is simpler, it contains only two possible orderings, we will

show all the contributions by direct calculation of the integrands in (2.7).

Before giving the examples, it is useful to introduce the following notation

-6
TREE
FEY

-5
TREE
FEY

-4
TREE
FEY

-3
TREE
FEY

-2
TREE
FEY -n

TREE
FEY

-1
TREE
FEY

:=

l

-6
TREE
FEY

-5
TREE
FEY

-4
TREE
FEY

-3
TREE
FEY

-2
TREE
FEY -n

TREE
FEY

-1
TREE
FEY

+

l

-6
TREE
FEY

-5
TREE
FEY

-4
TREE
FEY

-3
TREE
FEY

-2
TREE
FEY -n

TREE
FEY

-1
TREE
FEY

+ · · ·+ l

-6
TREE
FEY

-5
TREE
FEY

-4
TREE
FEY

-3
TREE
FEY

-2
TREE
FEY -n

TREE
FEY

-1
TREE
FEY

.

(5.1)

– 18 –



J
H
E
P
1
0
(
2
0
1
7
)
1
7
5

5.1 Three-point

In this case there are just two partial amplitudes, one coming from M1-loop
3 [1, 2, 3|1, 2, 3]

and another from M1-loop
3 [1, 2, 3|3, 2, 1]. In addition, as inferred from (2.7), we have two

expressions for PT a1:a2
1-loop[1, 2, 3], one written in terms of the D a:b

type−∗’s from the ordering

(1,2,3), and the other in terms of the ordering (3,2,1). In the following we disentangle each

of them.

5.1.1 Obtaining M
1-loop
3 [1, 2, 3|1, 2, 3]

Let us start with the first CHY-integrand

ICHY
1-loop[1,2,3|1,2,3] =

PTtree[1,2,3]×PTtree[1,2,3]

(a1, b1, b2,a2)2
×[

2Da1:a2
type−0[1,2,3]3ω+Da1:a2

type−I[1,2,3]2ω
]
×
[
σ12ω

b1:b2
1:2 +σ23ω

b1:b2
2:3 +σ31ω

b1:b2
3:1

]
=−

[
2ICHY

(I) [1,2,3]1:2+ICHY
(III) [1,2,3]1:2+ICHY

(I) [1,(2,3)]1:2+ICHY
(I) [(3,1),2]1:2

+ cyc(1,2,3)] (5.2)

where we have introduced the shorthand notation

ICHY
(I) [i,(j,k)]i:j := (−1)

[
(−1)× 1

σ2
a1b1

σ2
a2b2

σb1b2
× 1

σia1σia2×σja1σka2
× 1

σib1σjb2σki×(j,k)

]
,

ICHY
(I) [(k, i), j]i:j := (−1)

[
(−1)× 1

σ2
a1b1

σ2
a2b2

σb1b2
× 1

σka1σia2×σja1σja2
× 1

σib1σjb2σjk×(k,i)

]
.

In terms of the CHY-graphs one has

M1-loop
3 [1, 2, 3|1, 2, 3] =

1

24

∫
dΩ× sa1b1× (5.3)

∫
dµtree

3+4


2

1

1

2

3 +

1

0

2

3 +

1

0

2
3

+

1

2

33

0 + cyc(1, 2, 3)


.

That can be simplified further using (3.22)

M1-loop
3 [1, 2, 3|1, 2, 3] =

1

24

∫
dΩ× sa1b1× (5.4)

∫
dµtree

3+4



1

1

2

3 +

1

0

2
3

+

1

2

33

0 + cyc(1, 2, 3)


.
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From the general result in section 3.1 the first integral reduces to

1

24

∫
dΩ sa1b1

∫
dµtree

3+4



1

1

2

3 + cyc(1, 2, 3)


=

1

2 3

, (5.5)

while the rest of terms can be cast in the general form depicted in figure 4(a), and their

computations is totally similar to the one presented in section 3.1

1

24
× sa1b1 ×

∫
dµtree

3+4

1

0

2
3

=
1

s23
× 1

(ka2 + kb2)2 (k1 + ka1 + kb1)2
, (5.6)

1

24
× sa1b1 ×

∫
dµtree

3+4

1

2

33

0 =
1

s13
× 1

(ka2 + kb2)2 (k1 + k3 + ka1 + kb1)2
. (5.7)

Notice that by performing the integral
∫
dΩ, i.e. at the forward limit, the momentum

conservation condition becomes, k1 + k2 + k3 = 0 (s12 = s13 = s23 = 0), and the expres-

sions (5.6), (5.7) are ill defined. This fact indicates that these type of terms need some

regularization.10 One way to obtain a well defined result by integrating (5.6) and (5.7)

over
∫
dΩ is to regularize the forward limit condition, i.e. instead to consider the measure,

dDka2 d
Dkb2 δ

(D)(ka2+ka1) δ(D)(kb2+kb1), we allow for the measure dDka2 d
Dkb2 δ

(D)(ka2+

ka1 − ε
2) δ(D)(kb2 + kb1 − ε

2), where εµ is an infinitesimal vector (ε2 ∼ 0) orthogonal to the

external vectors11 (ε · ki = 0). Using this new measure the momentum conservation condi-

tion becomes, k1 +k2 +k3 = ε (s12 = s13 = s23 = ε2), and now we are able to integrate (5.6)

and (5.7). Considering the leading order term one has

∫
dΩ

[
1

s23 (ka2 + kb2)2 (k1 + ka1 + kb1)2

]
=

1

s23
× 1

`2 (`+ k1)2
=

1

2 3

l
, (5.8)

∫
dΩ

[
1

s13 (ka2 + kb2)2 (k1 + k3 + ka1 + kb1)2

]
=

1

s13
× 1

`2 (`+ k1 + k3)2
=

1

2

3

l
.

10Notice that in the linear propagator approach these kind of diagrams are absent [42, 43], see section 6.
11Let us recall this condition depends of the dimension of the momentum space.
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Finally, adding all the partial results one gets

M1-loop
3 [1, 2, 3|1, 2, 3] =

1

2 3

+

1

2 3

+

1

2

3

+

1 2

3

(5.9)

which is the expected answer, and has also been checked numerically. In section 6 we will

briefly discuss about the external-leg bubbles contributions in M1-loop
3 [∗|∗].

5.1.2 Obtaining M
1-loop
3 [1, 2, 3|3, 2, 1]

To compute the next partial amplitude we use the second expression for PT a1:a2
1-loop[1, 2, 3]

in (2.7). The CHY-integrand for this case is

ICHY
1-loop[1,2,3|3,2,1] =−PTtree[3,2,1]PTtree[3,2,1]

(a1, b1, b2,a2)2

[
Da1:a2

type−0[3,2,1]3ω+Da1:a2
type−I[3,2,1]2ω

]
×
[
σ32ω

b1:b2
3:2 +σ21ω

b1:b2
2:1 +σ13ω

b1:b2
1:3

]
= ICHY

(I) [3,2,1]3:2+ICHY
(III) [3,2,1]3:2+ICHY

(I) [3,(2,1)]3:2+ICHY
(I) [(1,3),2]3:2

+cyc(3,2,1)

= ICHY
(I) [3,(2,1)]3:2+ICHY

(I) [(1,3),2]3:2+cyc(3,2,1) , (5.10)

where in the first line we used the inversion property of the PT factors, and in the third

one the result, ICHY
(III) [3, 2, 1]3:2 = −ICHY

(I) [3, 2, 1]3:2 + (zero after integration), given in (3.22).

Translating to CHY-graphs the amplitude becomes,

M1-loop
3 [1, 2, 3|3, 2, 1] =

(−1)

24

∫
dΩ× sa1b1 (5.11)

×
∫
dµtree

3+4


1

0

2

3

+

1

2

3

0 + cyc(3, 2, 1)


.

The integrals entering in (5.11) were already computed in the example above, (5.6)–(5.8).

Collecting then we can write the total result as

M1-loop
3 [1, 2, 3|3, 2, 1] = −


1

23

+

1

2

3

+

12

3
 , (5.12)

which has been checked numerically.

Hitherto we have found the Feynman diagrams expansion for the canonical ordering,

M1-loop
3 [1, 2, 3|1, 2, 3] and its opposite ordering, M1-loop

3 [1, 2, 3|3, 2, 1], in (5.9), (5.12) respec-

tively. With those it is now straightforward to verify the relation

(−1) M1-loop
3 [1, 2, 3|1, 2, 3] ∩M1-loop

3 [3, 2, 1|3, 2, 1] = M1-loop
3 [1, 2, 3|3, 2, 1] , (5.13)
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which is the one-loop equivalent to (4.3) [4]. In [42] a general relation at one-loop was con-

jectured, but in the Q-cut representation, i.e. using the prescription presented in section 4.1.

Although we have not got a general proof for (5.13), we have a strong numerical evidence

that the conjecture formulated in [42] can be extended to the new proposal formulated in

this paper as

M1-loop
n [π|ρ] = (−1)nπ|ρ M1-loop

n [π|π] ∩M1-loop
n [ρ|ρ] . (5.14)

5.2 Four-point

In this case we will have to deal with three different independent orderings,

[π|ρ] ∈ {[1234|1234], [1234|4321], [1234|1243]} . (5.15)

We will calculate explicitly the first one and rely heavily in the use of (5.14) in order to

infer the rest of them.

The CHY-integrand for the partial amplitude M1-loop
4 [1, 2, 3, 4|1, 2, 3, 4] reads

ICHY
1-loop[1, 2, 3, 4|1, 2, 3, 4] =

PTtree[1, 2, 3, 4]PTtree[1, 2, 3, 4]

(a1, b1, b2, a2)2

×
[

3D a1:a2
type−0[1, 2, 3, 4]4ω + 2D a1:a2

type−I[1, 2, 3, 4]3ω

+ D a1:a2
type−I[1, 2, 3, 4]2ω +

1

2
D a1:a2

type−II[1, 2, 3, 4]2ω
]

×
[
σ12 ω

b1:b2
1:2 + σ23 ω

b1:b2
2:3 + σ34 ω

b1:b2
3:4 + σ41 ω

b1:b2
4:1

]
.

After expanding the terms we obtain several cancellations due to the identity,

ICHY
(III) [∗] = −ICHY

(I) [∗], which was proven in (3.22) in the simplest case. After a rather cum-

bersome calculation the above amplitude can be cast in terms of CHY-graphs as

M1-loop
4 [1, 2, 3, 4|1, 2, 3, 4] =

(−1)

25

∫
dΩ× sa1b1×

∫
dµtree

4+4



1

2

2

3

4

+

1

1

2

3

4

+

1

1

2

3

4

+

1

1

2

3

4

+

1

0

2

3

4

+

1

0

2

3

4

+

1

0

2

3

4

+ cyc(1, 2, 3, 4)


. (5.16)

All the integrals in (5.16) can be computed using the Propositions 1, 2, 3 and the technology

described in their proofs. The result is, following the same order: one box, four triangles,

two bubbles and the external-leg bubbles The latter must be regularized. In terms of
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Feynman diagrams one has

M1-loop
4 [1, 2, 3, 4|1, 2, 3, 4] = −

1

2 3

4

−


1

2 3

4

+ cyc(1, 2, 3, 4)



−

1

2 3

4

−

1

2 3

4

−


1

2

3

4

+ cyc(1, 2, 3, 4)

 ,

(5.17)

where the grey circle in the third graph inside of the bracket means the sum over all possible

trivalent planar diagrams. This result was checked numerically.

In order to calculate analytically the next contributions we are going to use the con-

jecture in (5.14)

M1-loop
4 [1, 2, 3, 4|4, 3, 2, 1] = (−1)M1-loop

4 [1, 2, 3, 4|1, 2, 3, 4] ∩M1-loop
4 [4, 3, 2, 1|4, 3, 2, 1]

= −

1

2 3

4

−

1

2 3

4

−


1

2

3

4

+ cyc(1, 2, 3, 4)

 , (5.18)

M1-loop
4 [1, 2, 3, 4|1, 2, 4, 3] = (−1)M1-loop

4 [1, 2, 3, 4|1, 2, 3, 4] ∩M1-loop
4 [1, 2, 4, 3|1, 2, 4, 3]

= −

1

2 3

4

−

1

2 3

4

−

1

2

3

4

−
1

2

3

4

−

1

2

3

4
−

1

2

3

4

. (5.19)

These results were checked numerically concluding that, in fact, the conjecture in (5.14)

works perfectly.

With this procedure we can easily go to higher point cases, since we can always con-

struct the CHY-graphs for M1-loop
n [1|1], where 1 means canonical ordering, and know how

to calculate all the CHY-integrals.

5.3 General structure of M
1-loop
N [1N |1N ]

From the CHY-graphs representation found for M1-loop
3 [13|13] and M1-loop

4 [14|14] in (5.4)

and (5.16) respectively, where 1N means the canonical ordering (1, 2, . . . , N), it is direct to

obtain the general expression for M1-loop
N [1N |1N ]. To be precise, up to global sign, one has

M1-loop
N [1N |1N ] =

1

2N+1

∫
dΩ sa1b1

∫
dµtree

N+4

[
N∑
a=2

∑
i

Gchya−2
1,...,N [[i]] + cyc(1, . . . , N)

]
,

(5.20)

– 23 –



J
H
E
P
1
0
(
2
0
1
7
)
1
7
5

where the set, Gchya−2
1,...,N , is defined as

Gchyn−2
1,...,N :=


All possible CHY-graphs with the form

��

��

��

��

1

2 3

n - 2

N1

2

n


, (5.21)

being Gchyn−2
1,...,N [[i]] an element in Gchyn−2

1,...,N . For instance

Gchy1
1,2,3,4 =


1

1

2

3

4

,

1

1

2

3

4

,

1

1

2

3

4

 . (5.22)

Therefore, it now is clear that (5.20) is in agreement with (5.4) and (5.16).

Using the same techniques developed in the proof of Proposition 1, we can compute

the CHY-integral for a generic element in Gchyn−2
1,...,N . Thus, we assert the following general

result at the integrand level

1

2N+1

∫
dΩ×sa1b1×

∫
dµtree

N+4

��

��

��

��

1

2 3

n - 2

Ntree-1tree-1

tree-2

tree-n

=

��

��

��

��

� l
1

2

3

N

Pn

tree-1

tree-n

tree-2

(5.23)

where the grey circles mean the sum over all possible trivalent planar diagrams and the

symbol, “Pn”, means the loop circle is a regular polygon of n edges, where we define P2 as

a bubble.

Finally, using the general results given in (5.20) and the “map” in (5.23), the struc-

ture of M1-loop
N [1N |1N ] becomes simple. In [56], we also analyse the general case for the

integrands that contribute to M1-loop
N [π|ρ].

6 External-leg bubbles

As it is known, in the linear propagators formalism the external-leg bubbles vanish. To

illustrate that, let us consider the following Feynman integrand

� l
��� =

1

`2(`+ ki)2
=

1

`2(2 ` · ki + k2
i )
− 1

(`+ ki)2(2 ` · ki + k2
i )
, (6.1)

where we have applied the partial fraction identity, 1
AB = 1

A (B−A) + 1
B (A−B) . Performing

a shifting over the loop momentum variable in the second term in (6.1), i.e. `→ ˜̀= `+ki,
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one obtains12

1

`2(`+ ki)2
=

1

`2(2 ` · ki + k2
i )
− 1

`2(2` · ki − k2
i )
. (6.2)

Since we are interested on the external leg bubbles,13 we assume that ki is an external

massless on-shell particle and therefore (6.2) vanishes. This is the reason, in principle, why

in the linear propagator formalism the external-leg bubbles do not appear [43]. In [42]

it was also argued that the external-leg bubbles contribution must be regularized. In the

proposal we present in this work, the external-leg bubbles appear in a natural way and been

also singular their contribution need to be regularize. Notice that from the map (5.23),

it is straightforward to identify the external-leg bubbles contributions in M1-loop
N [1N |1N ].

This contribution is given by the expression

M1-loop
singular[1N |1N ] =

1

2N+1

∫
dΩ× sa1b1

∫
dµtree

N+4

 2∑
j=1

Gchy0−ELB
1,...,N [[j]] + cyc(1, . . . , N)

 ,
where Gchy0−ELB

1,...,N is defined as

Gchy0−ELB
1,...,N :=


1

0

2

N

,

1

0

2

3

N
 . (6.3)

Clearly, Gchy0−ELB
1,...,N ⊂Gchy0

1,...,N , and this is the generator of the external-leg bubbles (ELB).

Finally, we believe perhaps it would be interesting to find a regularization method in

the CHY coordinates.

7 Feynman iε prescription

In order to obtain the full form of the traditional Feynman propagators, we show that

our proposal is able to reproduce the Feynman iε. This term can be included at each

propagator in a pragmatic and simple way, by dimensional reduction in the momenta of

the auxiliary punctures, i.e. (ka1 , ka2 , kb1 , kb2).

Let us consider that the momenta of the auxiliary punctures has one more dimension

than the rest of the kinematic data, namely,

KM
a1,2 := (kµa1,2 , k

D+1
a1,2 ), KM

b1,2 := (kµb1,2 , k
D+1
b1,2

), µ = 1, . . . , D , (7.1)

kMα := (kµα, 0), `M := (`µ, 0), α = 1, . . . n ,

where D is the number of physical dimensions and n is the number of external particles.

The forward limit measure, dΩ, is modified in the following way

dΩ := dD(ka1 +kb1)δ(D)(ka1 +kb1−`)dD+1Ka2d
D+1Kb2δ

(D+1)(Ka2 +Ka1)δ(D+1)(Kb2 +Kb1).

12We are assuming that the integration measure over ` is invariant under this transformation.
13On this example we are considering that the propagator, 1

K2 , is regularized.
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After performing all integrals, the propagators become

1

(Ka1 +Kb1 + P )2
=

1

(ka1 + kb1 + p)2 + 2 kD+1
a1 kD+1

b1

=
1

(`+ p)2 + 2 kD+1
a1 kD+1

b1

, (7.2)

where PM = (pµ, 0) is a momentum vector given by the sum of external momenta, i.e

PM = kMα1
+ · · · kMαi = (kµα1 + · · ·+kµαi , 0) := (pµ, 0), therefore (Ka1 +Kb1) ·P = (ka1 +kb1) ·p.

Finally, with the identification, 2 kD+1
a1 kD+1

b1
= iε, we obtain the Feynman propagators in

full form.

8 Discussions

Along the line of reasoning introduced in [49], we have proposed a reformulation for the

one-loop Parke-Taylor factors given in [39, 42, 43]. Exploiting the algebraic (Schouten-like)

identity between the σij ’s in the PT factors, we were able to show that they can be expanded

in such a way that no tadpoles integrands will appear later, so for bi-adjoint Φ3 theory

this cancellation is not necessarily related to the anti-symmetry of the structure constant

in the cubic vertex. The construction also allowed us to build and classify systematically

all the contributing CHY-integrals to the one-loop n-point case.

These new PT factors were used to calculate the partial amplitudes for the bi-adjoint

Φ3 theory at one-loop. It can be seen that the prescription presents advantages over the

previous ones:

• In this approach the CHY-integrals are supported over n + 4 massless scattering

equations only, where n is the total number of external particles. Thus, all the known

techniques to compute these type of integrals can be used [4, 18, 20, 24, 25, 29, 31–

33, 51, 52].

• It gives directly the quadratic Feynman propagators, unlike the already known pre-

scriptions, which must apply the partial fractions identity, namely, their results are

written in the Q-cut language [53].

• The corresponding CHY-graphs are well suited to be easily solved using the

Λ-algorithm allowing to calculate the integrands for higher points cases in a simi-

lar fashion to Feynman diagrams. In addition, with the technology developed in this

work, we are able to compute the CHY-integrals directly in the forward limit, up to

external-leg bubble configurations. The reason is because the singular solutions of

the scattering equations do not contribute.

In addition, it is straightforward to note that if one takes all the permutations instead

of the cyclic ones, i.e,

Ia1:a2
L =

∑
α∈Sn−1

1

σα1α2σα2α3 · · ·σαn−1αn

ωa1:a2
αn:α1

= (−1)n PTtree[1, . . . , n] D a1:a2
type−0[n, . . . , 1]nω

= ωa1:a2
1:1 ωa1:a2

2:2 · · · ωa1:a2
n:n (8.1)

= ωa1:a2
1:2 ωa1:a2

2:3 · · · ωa1:a2
n:1 ,

– 26 –



J
H
E
P
1
0
(
2
0
1
7
)
1
7
5

where α1 := 1 and Sn−1 is the set of all permutations of {2, 3, . . . , n}, and by integrating

it with, Ib1:b2
R = PT b1:b2

1-loop[1, 2, . . . , n], one obtains the n-gon with the canonical ordering,

which is a consequence of Proposition 1. Therefore, we can say that the calculations in [49]

are a particular case of our prescription.

At this time, most of computations performed at loop level using the CHY prescription

have been obtained in the Q-cut language [38–43, 46–48, 51, 57–59], i.e. linear propagators

in the loop momenta. Additionally, it is very well known that the PT factors is one of the

most important ingredient to define several types of theories in the CHY approach, most

notably Yang-Mills and Einstein gravity (from the Kawai-Lewellen-Tye (KLT) relations

point of view).

We are confident that by using the new formulation of the PT factors at one-loop, as it

has been proposed in this work, we will be able to extend our ideas beyond the bi-adjoint

Φ3 case, in particular for the Yang-Mills theory (see appendix A and eq. (A.13)), Recently,

many works about the Bern-Carrasco-Johansson (BCJ) duality and KLT kernel in the CHY

context have been published [60–67]. In particular, at one-loop all found results have been

written in the Q-cuts representation [62, 63]. Thus, following the lines of the new proposal

developed here, it would be very interesting to obtain result in terms of the conventional

propagators, (`+K)−2, and to compare with the technologies presented in [62, 63, 68–70].

Moreover, extensions to higher loops are being developed [56]. In addition, it would

be fascinating to found the origin of this new prescription or its relationship with the

Ambitwistor string theory [36, 71–73].

Acknowledgments

H.G. would like to thank to E. Bjerrum-Bohr, J. Bourjaily, and P. Damgaard for discussions.

H.G. is very grateful to the Niels Bohr Institute — University of Copenhagen for hospitality

and partial financial support during this work. We thank to S. Mizera and P. Damgaard

for useful comments. The work of H.G. is supported by USC grant DGI-COCEIN-No

935-621115-N22. P.T. is partially supported by MINECO grant FPA2016-76005-C2-1-P.

A CHY-integrands at one-loop

In this appendix we will give a simple way to construct CHY-integrands that have a partic-

ular dependence on the loop momenta after integration, i.e. they come as couples, (ka1+kb1)

and (ka2 + kb2).
As it was mentioned previously, the proposal given in this paper follows the idea

presented in [49]. The main idea that motivated the one-loop calculation in [49] is that the
CHY-integral

1

2n+1

∫
dDka2 d

Dkb2δ
(D)(ka2 + ka1)δ(D)(kb2 + kb1) × (A.1)

∫
dµtree

n+4

[
ωa1:a2
1:2 ωa1:a2

2:3 · · · ωa1:a2
n:1

(a1, b1, b2, a2)

]
×

[
ωb1:b2
1:2 ωb1:b2

2:3 · · · ωb1:b2
n:1

(a1, b1, b2, a2)

]
=

2

2

1

2

3

4
5

n
1

1
�

�

�

� + per(1, . . . , n)
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is just the unitary cut of the two-loop diagram [51], at the integrand level, as it has been

represented above. Therefore, in order to obtain a one-loop integrand, we multiply by the

factor, (ka1 +kb1)2, and we make the identification, ka1 +kb1 = `. This process is performed

by the integral,
∫
dD(ka1 + kb1) δ(D)(ka1 + kb1 − `). This would be a simple explanation

why the measure, dΩ × sa1b1 , is introduced in that particular way. Note that the (A.1)

CHY-integrand is a generalization for the one found in [39, 47]

∫
dµ1-loop

n+2

[
ω`

+:`−
1:2 ω`

+:`−
2:3 · · · ω`+:`−

n:1

(`+, `−)

]
×

[
ω`

+:`−
1:2 ω`

+:`−
2:3 · · · ω`+:`−

n:1

(`+, `−)

]
(A.2)

Linear propagators
−−−−−−−−−−−−−−−−−−→

l
1

2

3

4

5

6

n

+ per(1, . . . , n),

which is the one that reproduces only linear propagators.

Generalizing the (A.1) idea, our proposal is

In :=
1

2n+1

∫
dΩ sa1b1

∫
dµtree

n+4

[
I a1:a2
L (σ)

(a1, b1, b2, a2)

]
×

[
I b1:b2
R (σ)

(a1, b1, b2, a2)

]
.

So, a natural question is: what must be the form of the integrands, {I a1:a2
L , I b1:b2

R }, in order

to obtain a function of the couples, (ka1 + kb1) and (ka2 + kb2) ? Before giving an answer

of this question, it is useful to remind our one-loop Parke-Taylor factors construction.

In [42, 43], the planar one-loop Parke-Taylor factors for linear propagators were pre-

sented, and they can be written like

PT1-loop[π] :=
1

(`+, `−)

∑
α∈cyc(π)

1

σα1α2σα2α3 · · ·σαn−1αn

ω`
+:`−
αn:α1

. (A.3)

Following the previous proposal and the generalization of (A.2) given in (A.1), in this paper

we proposed the planar Parke-Taylor factors at one-loop for quadratic propagators as

I a1:a2
L (σ)

(a1, b1, b2, a2)
=

PTa1:a2
1-loop[π]

(a1, b1, b2, a2)
:=

1

(a1, b1, b2, a2)

∑
α∈cyc(π)

1

σα1α2σα2α3 · · ·σαn−1αn

ωa1:a2
αn:α1

,

I b1:b2
R (σ)

(a1, b1, b2, a2)
=

PTb1:b2
1-loop[ρ]

(a1, b1, b2, a2)
:=

1

(a1, b1, b2, a2)

∑
β∈cyc(ρ)

1

σβ1β2σβ2β3 · · ·σβn−1βn

ωb1:b2
βn:β1

.

(A.4)

It is not obvious that by using these integrands we will obtain a functional dependence of

the loop momenta like (ka1 + kb1) and (ka2 + kb2), nevertheless, it is not difficult to show

that this turn out to be the case. First of all, as in (4.11), it is straightforward to check
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that the integrands in (A.4) can be written as

PTa1:a2
1-loop[π]

(a1, b1, b2, a2)
=

∑
α∈cyc(π)

PTtree[α1, α2, . . . , αn, a1, b1, b2, a2] ,

PTb1:b2
1-loop[ρ]

(a1, b1, b2, a2)
=

∑
β∈cyc(ρ)

PTtree[β1, β2, . . . , βn, b1, a1, a2, b2] . (A.5)

Each term in the (A.5) sums is called a partial planar one-loop Parke-Taylor factor, and

we denote them as

PT1-loop
L [α] := PTtree[α1, . . . , αn, a1, b1, b2, a2] =

1

(a1, b1, b2, a2)

[
(a1, a2)

(α1, . . . , αn, a1, a2)

]
,

PT1-loop
R [β] := PTtree[β1, . . . , βn, b1, a1, a2, b2] =

1

(a1, b1, b2, a2)

[
(b1, b2)

(α1, . . . , αn, b1, b2)

]
.

(A.6)

Next, by taking the CHY-integral of the product of these two factors, PT1-loop
L and

PT1-loop
R , for two generic orderings14 α and β, it can be represented as∫
dµtree

n+4 PT1-loop
L [α1, . . . , αn]× PT1-loop

R [β1, . . . , βn] (A.7)

=

22

2

1

11

α

α

αn

�

�

�

�

⋂ 22

2

1

11

β

β

β
n

�

�

�

�
=

1α

2
α

αn

1�1
�

2
�

2
� ⋂

1
β

2
β

βn

1�1
�

2
�

2
�

,

where we have used the intersection property [4] from section 4, and the grey circles mean

the sum over all possible trivalent planar diagrams. Clearly, in (A.7) we have shown that

the CHY-integral,
∫
dµtree

n+4 PT1-loop
L [α]×PT1-loop

R [β], is in fact a function of the two off-shell

momenta which come from the combinations of four on-shell momenta: (ka1 + kb1) and

(ka2 +kb2). This implies that the whole construction developed in this paper is well defined,

i.e. the three types of CHY-integrands:

I a1:a2
L (σ)

(a1, b1, b2, a2)
×

I b1:b2
R (σ)

(a1, b1, b2, a2)
= PT1-loop

L [α]× PT1-loop
R [β] , (A.8)

I a1:a2
L (σ)

(a1, b1, b2, a2)
×

I b1:b2
R (σ)

(a1, b1, b2, a2)
=

PTa1:a2
1-loop[π]

(a1, b1, b2, a2)
× PT1-loop

R [β] , (A.9)

I a1:a2
L (σ)

(a1, b1, b2, a2)
×

I b1:b2
R (σ)

(a1, b1, b2, a2)
=

PTa1:a2
1-loop[π]

(a1, b1, b2, a2)
×

PTb1:b2
1-loop[ρ]

(a1, b1, b2, a2)
, (A.10)

14Note that this is a general case of the example shown in (4.12).
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give a functional dependence of the loop momenta like (ka1 + kb1) and (ka2 + kb2). In

addition, from the identities∑
α∈Sn−1

PT1-loop
L [α1, . . . , αn−1, n] =

ωa1:a2
1:2 ωa1:a2

2:3 · · · ωa1:a2
n:1

(a1, b1, b2, a2)
, (A.11)

∑
β∈Sn−1

PT1-loop
R [β1, . . . , βn−1, n] =

ωb1:b2
1:2 ωb1:b2

2:3 · · · ωb1:b2
n:1

(a1, b1, b2, a2)
, (A.12)

where Sn−1 is the group of (n− 1)-permutations, the CHY-integrand in (A.1),

I a1:a2
L (σ)

(a1, b1, b2, a2)
×

I b1:b2
R (σ)

(a1, b1, b2, a2)
=

[
ωa1:a2

1:2 ωa1:a2
2:3 · · · ωa1:a2

n:1

(a1, b1, b2, a2)

]
×

[
ωb1:b2

1:2 ωb1:b2
2:3 · · · ωb1:b2

n:1

(a1, b1, b2, a2)

]
,

gives also a functional dependence of (ka1 + kb1) and (ka2 + kb2).

Therefore, we have found an answer for the question formulated previously, to obtain

a CHY-integral that is able to give a functional dependence of the momenta, (ka1 + kb1)

and (ka2 + kb2), the integrands,
I a1:a2L (σ)

(a1,b1,b2,a2) and
I b1:b2R (σ)

(a1,b1,b2,a2) , must be a linear combination

of the factors, PT1-loop
L and PT1-loop

R , respectively.

Finally, from the ideas given in this appendix, in order to reproduce the planar con-

tribution at one-loop (with quadratic propagators) for Yang-Mills theory, we propose the

following prescription [56]

AYM
1-loop(1, 2, . . . , n) =

∫
dD`

(2π)D
×
∫
dΩ sa1b1

2n+1
×
∫
dµtree

n+4

PTa1:a2
1-loop[1, 2, . . . , n]

(a1, b1, b2, a2)

×
∑
ρ∈Sn

na2,b2|ρ1···ρn|b1,a1 × PT1-loop
R [ρ1, . . . , ρn], (A.13)

where na2,b2|ρ1···ρn|b1,a1 are the BCJ numerators, which must be found (see [62, 63] for

linear representation). Additionally, some progress towards the construction of the partial

non-planar one-loop Parke-Taylor factors is in development. In [56], we have shown that

those non-planar Parke-Taylor factors can be written as a linear combination of PT1-loop
L

(or PT1-loop
R ), as it is claimed in this appendix.

B Proof of the one-loop Parke-Taylor factor expansion

The path we found to write (2.2) as a sum of terms with a minimum number of two

ωa1:a2
i:j ’s was not a straightforward one, but it allowed us to see that the space for the

one-loop CHY diagrams with a fixed number of external points is bigger than the one

of Feynman diagrams. We have seen that the diagrams we have encounter so far can be

written in terms of the diagrams we computed in section 3, even diagrams that cannot be

solved using the Λ-algorithm, which happens to be the case for the original Parke-Taylor

factor. Our proof will be supported only in the use of the Schouten-like identity

1 =
σacσbd − σadσbc

σabσcd
, (B.1)
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which give us a cross-ratio to relate the diagrams algebraically, without the use of the

scattering equations.

Our starting point is the expression (2.2) for the one-loop Parke-Taylor factor with

ordering π, it can be rewritten as follows

PT a1:a2
1-loop[π] := PTtree[π]

∑
α∈cyc(π)

σαnα1ω
a1:a2
αn:α1

. (B.2)

Since the proof works the same way for any ordering, we can take π = (12 . . . n), then

PT a1:a2
1-loop[1, 2, . . . , n] = PTtree[1, 2, . . . , n] (σ12ω

a1:a2
1:2 + σ23ω

a1:a2
2:3 + . . .+ σn1ω

a1:a2
n:1 ) . (B.3)

One thing to attempt would be to solve the diagram corresponding to the first term

and then take cyclic permutations of the result, but it leads to singular cuts, so we cannot

apply the Λ-algorithm. Since the PTtree is a global factor, we can perform our analysis

just on the first term σω and then apply the cyclic permutations to get the whole PT1-loop.

Writing it explicitly

σ12ω
a1:a2
1:2 =

σ12σa1a2
σ1a1σ2a2

. (B.4)

We want to find terms with the higher order of ω’s, since we are missing 2n−2 factors in

the denominator, we use the cross-ratios (B.1) to obtain them. Now we have (B.4) times “1”

σ12σa1a2
σ1a1σ2a2

(
σ23σa1a2 +σ2a2σ3a1

σ2a1σ3a2

)(
σ34σa1a2 +σ3a2σ4a1

σ3a1σ4a2

)
· · ·
(
σn1σa1a2 +σna2σ1a1

σna1σ1a2

)
. (B.5)

Expanding all the products and performing the sum over cyclic permutations will give

us more than just the term with n ω’s, it will give all the correct terms15 down to ω2,

but we will still have terms linear in ω. Actually, those linear terms belong to the inverse

ordering. Schematically, the expansion now looks like this

PT a1:a2
1-loop[1, 2, . . . , n] = PTtree[1, 2, . . . , n]

[
n× (σσ . . . σ)(n)(ωω . . . ω)(n)

+ (n− 1)×
{

(σσ . . . σω)(n)(ωω . . . ω)(n−2) + . . .
}

+ . . .

+ 2× (σω)(2)(σω)(2)

]1n
−PT a1:a2

1-loop[n, n− 1, . . . , 1] (B.6)

where the round brackets mean closed cycles, and the super indices on them mean the

number of factors inside. All the terms inside the square brackets belong to the (12. . . ,n)

ordering, so we put a super index 1 on them. A somehow unexpected result, is that we can

write PT a1:a2
1-loop[n, n − 1, . . . , 1] as a sum of all the terms on the square brackets (i.e. from

its inverse order), but with all the coefficients equal to 1. The expression we have, again

15By correct we mean that each one of these terms will give the integrand for a contributing Feynman

diagram.
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schematically, is

PT a1:a2
1-loop[n, n− 1, . . . , 1] = PTtree[1, 2, . . . , n]

[
(σσ . . . σ)(n)(ωω . . . ω)(n)

+
{

(σσ . . . σω)(n)(ωω . . . ω)(n−2) + . . .
}

+ . . .

+ (σω)(2)(σω)(2)

]1n
. (B.7)

To prove the previous relation we apply the inverse procedure with the Schouten like

identity, we dismantle the numerator by mixing the σij ’s with the σa1a2 ’s, factors that

cancel out the denominators will appear and we will arrive to the PT a1:a2
1-loop[n, n− 1, . . . , 1].

Replacing (B.7) in (B.6) we will have an expression with no linear terms in ω. Its

coefficients are the only ones modified

PT a1:a2
1-loop[1, 2, . . . , n] = PTtree[1, 2, . . . , n]

[
(n− 1)× (σσ . . . σ)(n)(ωω . . . ω)(n)

+ (n− 2)×
{

(σσ . . . σω)(n)(ωω . . . ω)(n−2) + . . .
}

+ . . .

+ 1× (σω)(2)(σω)(2)

]1n
. (B.8)

Now this one-loop Parke-Taylor factor will enter into CHY integrands that can be easily

solved using the Λ-algorithm, these give also the correct contributions for the bi-adjoint

Φ3 scalar theory.

C From quadratic to linear propagators in the CHY-graphs

The computational techniques developed in this work can be applied to the linear propa-

gators approach as well.

Schematically, the CHY-graphs that lead to linear propagators can be obtained from

the ones related to quadratic ones just by replacing the box loop by a “line loop” in the

CHY-graphs, meaning

(n - p - 1) anti - lines

n-p

l+

l-
(C.1)

where, `+ = −`− := `, and ` is the off-shell loop momentum, `2 6= 0. For example, the

general CHY-graph given in (3.9) becomes

1

2

3

n

n-2

1

2

3

n

n -3

l+

l-
. (C.2)
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Here we apply the nearest neighbour gauge fixing to compute the CHY-graph on the left

hand side of (C.2), which was described in detail in the proof of Proposition 1, where it

was applied to calculate the CHY-graph on the right hand side. Following exactly the same

steps we obtain the following result

∫
dµ1-loop

n+2

1

2

3

n

n -3

l+

l-
(C.3)

=
1

[(`+k1)2 − `2][(`+k1+kn)2 − `2][(`+ k1 + kn + kn−1)2 − `2] · · · [(`+
∑n

i,i 6=2 ki)
2 − `2]

,

which is linear in ` and where the measure dµ1-loop
n+2 was defined in (4.7).

Finally, if the result found in (C.3) is summed over all possible permutations, it provides

a proof to the conjecture proposed in [47], equation (7.18).
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