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1 Introduction

Among the recent developments that apply on-shell methods to the calculation of ampli-

tudes, following Witten’s work in 2003 [1], the proposal by Cachazo-He-Yuan (CHY) [2, 3]

offers some advantages. The CHY formalism applies to several dimensions and also to a

large array of theories [4–7], that go even beyond field theory [8–12]. The formalism is

based on the scattering equations (at tree-level)

Ea :=
∑
b 6=a

ka · kb
σab

= 0, σab := σa − σb, a = 1, 2, . . . , n, (1.1)

with the σa’s denoting the local coordinates on the moduli space of n-punctured Riemann

spheres and k2
a = 0. To obtain the tree-level S-matrix we have to perform a contour integral

localized over solutions of these equations, i.e.

An =

∫
Γ
dµtree

n ICHY
tree (σ), (1.2)
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where the integration measure, dµtree
n , is given by

dµtree
n =

∏n
a=1 dσa

Vol (PSL(2,C))
×

(σijσjkσki)∏n
b 6=i,j,k Eb

, (1.3)

and the contour Γ is defined by the n− 3 independent scattering equations

Eb = 0, b 6= i, j, k . (1.4)

A different integrand, ICHY
tree , describes a different theory. In the study of the scattering

equations at tree-level and the development of techniques for integration, many approaches

have been formulated [4, 13–36]. In particular, the method of integration that we use in

the calculations for the present paper was developed by one of the authors in [37], which

is called the Λ-algorithm.

The following step for the CHY formalism is going to loop corrections. A prescription

that allows to go to higher genus Riemann surfaces was developed in [38–42], which is called

the ambitwistor and pure spinor ambitwistor string theory. Another alternative approach

employing an elliptic curve was proposed in [43, 44] by one of the authors. Additionally,

in [45–47] they took an approach from tree-level, by introducing the forward limit with two

additional massive particles that played the role of the loop momenta.

The premise for the previously mentioned prescriptions at one-loop, is that from the

CHY formalism a new representation for the Feynman propagators arise, the so called

linear propagators, which look like (2` ·K+K2)−1 [41, 48]. Many interesting developments

in one-loop integrands identities (like the Kleiss-Kuijf (KK) identities [49]) and dualities

(e.g. the Bern-Carrasco-Johansson (BCJ) color-kinematics duality [50]) have been found

from the CHY approach, suported over the tree-level scattering equations with two extra

massive particles [51–53].

The linear propagators approach still leaves several open questions. First, there is no

direct way to relate some of the results with the ones from traditional field theory, like the

BCJ numerators for example. Another question is about direct loop integration, and to see

if it is more efficient to compute these new integrals that appear, in comparison with many

well known and long time developed integration techniques for the traditional Feynman

propagators.

Currently, we are developing a program to obtain the traditional quadratic Feynman

propagators, (`+K)−2, directly from the CHY. The first proposal came by one of the au-

thors in [54] for the Φ3 scalar theory. Following, two of the current authors in [55] presented

a reformulation for the one-loop Parke-Taylor factors that gives quadratic propagators, but

it was just made for leading (or planar) contributions. These new Parke-Taylor factors were

successfully tested in the massless bi-adjoint Φ3 theory.

The proposal to obtain the traditional quadratic Feynman propagators from the CHY

approach lies in the use of n + 4 massless scattering equations instead of n + 2. The

extra particles come from splitting the extra two massive loop momenta (`+, `−) into four

massless ones ((a1, b1), (b2, a2)). The splitting was motivated by taking an unitary cut on

a n-point Feynman diagram at two-loop (see figure 1), that leave us with a (n + 4)-point
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Figure 1. Unitary cut on a two-loop diagram.

tree-level diagram. It was also proved that the four auxiliary loop momenta will always

combine in order to give the loop momentum in the forward limit [54–56].

This work was motivated by the tree-level KK relations, which were found for gluons

at tree-level in 1988 [49]. Let us remind the algebraic relations that the partial amplitudes

satisfy

Atree(β1, . . . , βs, 1, α1, . . . , αr, n) = (−1)s
∑

σ∈OP{β}{α}

Atree(1, σ, n), (1.5)

where the order preserving product (OP) merges the ordering αT into the ordering β.

An one-loop version of the previous relations was found by Bern-Dixon-Dunbar-Kosower

in [57] (so they may be called the BDDK relations instead of the KK relations, since the

later are only at tree-level). Their outline for the proof relies on the structure constants, so

the result holds for any one-loop gauge theory amplitude where the external particles and

the particles circulating around the loop are both in the adjoint representation of SU(N).

This relation reads1

A1−loop
n;r (1, . . . , r − 1 ; r, . . . , n) = (−1)r

∑
σ∈COP{α}{β}

A1−loop
n;1 (σ). (1.6)

The amplitudes we have on the left hand side belong to the non-planar sector of the

perturbative expansion. These amplitudes are far less understood than the planar ones,

starting with the notion of the integrand which is ambiguous. At one-loop order there is

no way to draw a Feynman diagram that could lead us to the integrand and we can only

make an incursion into them using the previous relations. From another point of view,

twistor methods like the ones from [58] apply only to planar diagrams, so the first obstacle

to face from this perspective is the lack of duals for non-planar diagrams.

From a physics point of view, ’t Hooft’s large N limit [59] shows that the planar sector

of the amplitudes for a gauge theory with color group U(N) (with fixed ’t Hooft coupling)

is dominating, so by going beyond and studying these non-planar interactions we can get a

better understanding of that limit, where the ’t Hooft diagrams have a cylindrical topology.

1The cyclic ordering preserving product (COP) merges the cyclic permutations of {α} = {r − 1, . . . , 1}
leaving the {β} = {r, r + 1, . . . , n} ordering fixed. This merging of the orderings is quite different from the

one at tree-level, and makes the proof for the relation a non-trivial task.
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In twistor string, a non-planar open string amplitude at one-loop (scattering of gluons) has

the topology of that of a closed string, so it is a cylinder (an annulus with vertex operators

on the two boundaries). This brings the inclusion of conformal graviton exchanges, which

may presents itself as a drawback to the formalism.

The idea in the present work is to understand the amplitudes in the non-planar sec-

tor from the perspective of the CHY formalism. In this formalism, the ordering in the

amplitudes is directly associated with the Parke-Taylor factors, so our main focus will be

on those. Since our Parke-Taylor factors for the n-point one-loop amplitude come from

those at tree-level with (n+ 4)-point, we will analyse the KK relations in order to extract

the BDDK relations for the amplitudes. At tree-level there is already a version of the KK

relations for the Parke-Taylor factors in the CHY formalism [52].

One important aspect to realize is that not all of the terms in the (n + 4)-point KK

relations contribute to what may be the n-point BDDK relations for the Parke-Taylor

factors. After identifying what contributes to one-loop there is a simple and powerful

result, a relation for the partial one-loop Parke-Taylor factors that involves the regular

shuffle product for the orderings. The relations for the partial factors can be promoted

to relations for the full one-loop Parke-Taylor factors, this process involves taking cyclic

permutations and rearranging the partial factors. It is exactly after that promotion that

we find the BDDK relations for them.2 In this way, we provide a new proof for the BDDK

relations for the amplitudes from a different approach. Along the path, a more general

type of relations appear, and for those we still don’t have a direct physical interpretation.

It is known that the BDDK relations connect the non-planar amplitudes with the

planar ones, this will allow us to identify what would be the non-planar one-loop Parke-

Taylor factors, which are the building blocks for such amplitudes. Employing these new

objects in the construction of the CHY integrands, will lead to the identification of the non-

planar CHY-graphs. This new type of graphs do not have an equivalent in the traditional

formalism and encode all the information for the non-planar order in a single expression,

they also provide a clear definition of the integrand, at the level of the CYH formalism.

The developed non-planar CHY-graphs are applied to the massless Bi-adjoint Φ3 theory,

allowing us to explore the non-planar sector of the theory at one-loop, we will obtain all

the integrands which contribute to the amplitude at this quantum correction.

Outline. The present work is organized as follows. In section 2 we review the one-loop

Parke-Taylor factors for planar corrections that were proposed in [55], with a few changes

in the notation and define the partial planar one-loop Parke-Taylor factor, which will be

studied in depth in the following sections.

Section 3 is divided in two parts. In the first one we take the previously presented

partial Parke-Taylor factors, which are tree-level type ones, and apply the KK relations

on them in order to obtain the BDDK relations at one-loop. The development starts by

analysing the tree-level relations for n+4 particles, from there it becomes clear that not all

of the terms contribute to the one-loop case, but a sector from them. With that analysis we

2The BDDK relations involve a more elaborated shuffle product for the orderings, the COP product

that we mentioned before.
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find the simplest one-loop case, from there we will go to the most general relation possible

at one-loop, this is possible by the realization of an algebraic relation that includes the

shuffle product. The next part is where we find the BDDK relations for the full one-loop

Parke-Taylor factors, these being a particular case which resemble the relations for gluon

amplitudes. We also find some relations that generalize the BDDK ones.

In section 4 we employ the one-loop non-planar Parke-Taylor factors in the study of

one-loop amplitudes for the massless Bi-adjoint Φ3 theory. Since the CHY integrands for

this theory are given by the product of two Parke-Taylor factors, the contributions for

the one-loop amplitudes come from different sectors: the planar, the non-planar, and the

mixed one (planar; non-planar). The Bi-adjoint Φ3 theory plays a role in the double copy

between supersymmetric Yang-Mills and supergravity [60], also in color-kinematic relations

for scalar effective field theories [61]. Therefore, having and understanding the non-planar

sector has great value in the development of more relevant theories.

The non-planar CHY-graphs will be introduced in section 5 with some particular

worked out examples for the four-point and five-point cases. In section 6 we present the

general non-planar CHY-graphs for an arbitrary number of points. Finally, we present

our conclusions in section 7. Additionally, in order to make the paper self contained, we

provide the detailed calculations of the four-point amplitude from the CHY formalism in

appendix A and its exact equivalence with the results obtained from the standard method

based on the Feynman rules in appendix B.

Notation. For convenience, in this paper we use the following notation

σij := σi − σj , ωa:b
i:j :=

σab
σia σjb

. (1.7)

Note that ωa:b
i:j is the generalization of the (1, 0)-forms used in [56] to write the CHY

integrands at two-loop. In addition, we define the σab’s and ωa:b
i:j ’s chains as

(i1, i2, . . . , ip) := σi1i2 · · ·σip−1ipσipi1 , (1.8)

(i1, i2, . . . , ip)
a:b
ω := ωa:b

i1:i2 · · ·ω
a:b
ip−1:ipω

a:b
ip:i1 = ωa:b

i1:i1 · · ·ω
a:b
ip−1:ip−1

ωa:b
ip:ip ,

To have a graphical description for the CHY integrands on a Riemann sphere (CHY-

graphs), it is useful to represent each σa puncture as a vertex, the factor 1
σab

as a line

and the factor σab as a dashed line that we call the anti-line. Additionally, since we often

use the Λ-algorithm3 [37], then we introduce the color code given in figure 2 and 3 for a

mnemonic understanding.

Finally, we introduce the momenta notation

ka1,...,am :=

m∑
i=1

kai = [a1, . . . , am], sa1...am := k2
a1,...,am , s̃a1...am :=

m∑
ai<aj

kai · kaj .

3It is useful to recall that the Λ-algorithm fixes four punctures, three of them by the PSL(2,C) symmetry

and the last one by the scale invariance.
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massless puncture fixed by scale symmetry

unfixed massless puncture massless puncture fixed by PSL(2,C)

massive puncture fixed by PSL(2,C)

Figure 2. Vertex Color code in the CHY-graphs for the Λ-algorithm.
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branch cut 

1factor
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a b

ba(line) 

(anti−line) 

(double line) factor
ab

Figure 3. Edges Color code in the CHY-graphs for the Λ-algorithm.

2 Planar Parke-Taylor factors at one-loop

In a previous work, we found a reformulation for the Parke-taylor factors that leads to

quadratic Feynman propagators by evaluating only massless scattering equations in the

CHY prescription.

Let us remind the expression for the Parke-Taylor factor at tree-level in the CHY

approach, it is given by the following

PT[π] =
1

(π1, π2, . . . , πn)
, (2.1)

where “π” is a generic ordering and n is the total number of particles. In addition, it will

be useful to define a reduced Parke-Taylor factor, which does not involve all n particles, i.e.

P̂T[i1, . . . , ip] :=
1

(i1, . . . , ip)
, (2.2)

where p < n.

As it was shown in [55], the planar one-loop Parke-Taylor factor (on the left-sector,

denoted by a-sector) for quadratic propagators is given by4

PT(1)
a1:a2 [π] := PT[π1, π2, . . . , πn, a1, b1, b2, a2] + cyc(π)

=
1

(a1, b1, b2, a2)

∑
α∈cyc(π)

1

σα1α2σα2α3 · · ·σαn−1αn

ωa1:a2
αn:α1

(2.3)

=
(a1, a2)

(a1, b1, b2, a2)

∑
α∈cyc(π)

P̂T[α1, . . . , αn, a1, a2] .

4As it was explained in [54, 55], in order to compute scattering amplitudes at one-loop we must perform

the forward limit, ka1 = −ka2 (kb1 = −kb2). So, from the third line in (2.3), it is clear this definition is

totally analog to the one given in [45, 46] by the expression

PT(1)[π] :=
∑

α∈cyc(π)

PT[α1, . . . , αn,+,−],

which is just able to reproduce linear propagators.
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It is useful to remember that the Parke-Taylor factor on the right-sector (or b-sector)

is defined to be

PT
(1)
b1:b2

[ρ] :=
(b1, b2)

(a1, b1, b2, a2)

∑
β∈cyc(ρ)

P̂T[β1, . . . , βn, b1, b2]. (2.4)

Such as we explained in the appendix A in [55], the CHY-integral of the product,

PT
(1)
a1:a2 [π] × PT

(1)
b1:b2

[ρ], is always a function of the couples, (ka1 + kb1) and (ka2 + kb2).

This means, these type of integrals always produce quadratic propagators at one-loop by

the identification, (ka1 + kb1) = −(ka2 + kb2) = `.

Each one of the terms of the sum in (2.3) and (2.4) is called partial planar one-loop

Parke-Taylor factor which we denote them by pt
(1)
a1:a2 [i1, . . . , ip] (pt

(1)
b1:b2

[i1, . . . , ip]), namely

pt(1)
a1:a2 [i1, . . . , ip] :=

1

σi1i2σi2i3 · · ·σip−1ip

ωa1:a2
ip:i1

, (2.5)

in particular we define

pt(1)
a1:a2 [i1] := ωa1:a2

i1:i1
. (2.6)

Thus,

PT(1)
a1:a2 [π] =

1

(a1, b1, b2, a2)

∑
α∈cyc(π)

pt(1)
a1:a2 [α1, . . . , αn], (2.7)

and for the b-sector we must just perform the replacement, (a1, a2) → (b1, b2). Therefore,

for the rest of this work it is enough to work on the a-sector.

In [55], we found several algebraic manipulations on these Parke-Taylor factors that

allowed us to obtain the contributing planar diagrams for the bi-adjoint scalar Φ3 theory.

In order to go beyond the planar case, let us analyse a known relation between planar and

non-planar integrands.

3 From KK to BDDK relations and non-planar Parke-Taylor factors at

one-loop

In this section we will build an alternative proof for the BDDK relations at one-loop. Since

our Parke-Taylor factors come from the (n + 4)-point ones at tree-level, it makes perfect

sense to start analysing the KK relations for those. From the KK relations we will realise

than only a sector contributes to the one-loop Parke-Taylor factors, more specifically to

the partial one-loop Parke-Taylor factors. By taking the pertinent cyclic permutations we

will promote the partial factors to the full Parke-Taylor factors, there the BDDK identity

will arise naturally. Along this procedure we will be able to identify a new object, the

non-planar Parke-Taylor factors, we also will go beyond and find a generalisation for the

BDDK relations.

Let us recall a particular case of the KK relations for the Parke-Taylor factors [49, 52].

At tree-level we have the identity

PT[{{1}�{2,3,4, . . . ,n−1},n}] := PT[1,2,3,4, . . . ,n]+PT[2,1,3,4, . . . ,n] (3.1)

+PT[2,3,1,4, . . . ,n]+· · ·+PT[2,3,4, . . . ,n−1,1,n] = 0,

– 7 –
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where we have introduced the shuffle product “ � ”,5 just for a simple case of the first

entry merging in the next entries up until the one at the (n-1) position, we will generalise

this to two lists of arbitrary size and even beyond two lists. This will set the root of our

developments towards the case of one-loop. Note that we are making the following abuse

in the notation

PT[A1 +A2 + · · ·+Ap] ≡
p∑
i=1

PT[Ai] , (3.2)

where Ai is an ordered list of n different elements.

The relation (3.1) will set the starting point for our analysis.

3.1 KK relations for the partial one-loop Parke-Taylor factors

Translating the relation (3.1) for the partial one-loop Parke-Taylor factors, which from a

technical point of view are still at tree-level, it can be written as

PT[1,2, . . . ,n,a1, b1, b2,a2]+

n−1∑
i=2

PT[2, . . . , i,1, i+1, . . . ,n,a1, b1, b2,a2]+PT[2, . . . ,n,1,a1, b1, b2,a2]

+PT[2, . . . ,n,a1,1, b1, b2,a2]+PT[2, . . . ,n,a1, b1,1, b2,a2] =−PT[2, . . . ,n,a1, b1, b2,1,a2]. (3.3)

Note that in the terms on the second line in (3.3) there is a splitting in the points

assigned to the loop momenta. Those terms are perfectly normal at tree-level, but at loop

level they would not lead to any quadratic Feynman propagator in the forward limit, in

other words, the identification, (ka1 + kb1) = −(ka2 + kb2) = `, is not well defined on them.

In any case, we can analyse the terms where the splitting is not present.

Taking the sector of (3.3) where the loop momenta points are not split, we can find a

different relation for the partial one-loop Parke-Taylor factors. The new relation is given by

PT[1, 2, 3, . . . , n, a1, b1, b2, a2] +
n−1∑
i=2

PT[2, 3, . . . , i, 1, i+ 1, . . . , n, a1, b1, b2, a2]

+ PT[2, 3, . . . , n, 1, a1, b1, b2, a2] = ωa1:a2
1:1 P̂T[2, 3, . . . , n, a1, b1, b2, a2]. (3.4)

Again, with the introduction of the shuffle product, this relation can be written in a com-

pact and more legible way as follows

pt(1)
a1:a2 [{1}�{2, . . . ,n}] := pt(1)

a1:a2 [1,2, . . . ,n]+pt(1)
a1:a2 [2,1, . . . ,n]+· · ·+pt(1)

a1:a2 [2, . . . ,n,1]

= pt(1)
a1:a2 [1]×pt(1)

a1:a2 [2, . . . ,n]. (3.5)

The result from above can be generalized to lists of arbitrary size. In fact, we have been

able to find a more general relation for the partial planar one-loop Parke-Taylor factors,

which is given by the identity

General KK relations for the partial one-loop Parke-Taylor factors

pt
(1)
a1:a2 [{i1, i2, . . . ip}� {ip+1, . . . iq}� · · ·� {im, . . . , in}]

= pt
(1)
a1:a2 [i1, i2, . . . ip]× pt

(1)
a1:a2 [ip+1, . . . iq]× · · · × pt

(1)
a1:a2 [im, . . . , in]

5It is useful to remember the shuffle product, {α1, . . . αp}� {β1, . . . βq}, has a total of (p+q)!
p! q!

terms.

– 8 –
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One particular case is to take all the lists with size 1, a straightforward calculation

gives the result

pt(1)
a1:a2 [{1}�{2}�{3}�· · ·�{n}] = pt(1)

a1:a2 [1]×pt(1)
a1:a2 [2]×·· ·×pt(1)

a1:a2 [n]

=ωa1:a2
1:1 ×ωa1:a2

2:2 ×·· ·×ωa1:a2
n:n (3.6)

=
∑

α∈Sn−1

1

σα1α2σα2α3 · · ·σαn−1αn

ωa1:a2
αn:α1

,

where α1 := 1 and Sn−1 is the set of all permutations of {2, 3, . . . , n}. Let us recall that

the expression in (3.6) reproduces the symmetrized n-gon at one-loop.

Another particular case is by considering only two lists, taking the canonical ordering

we have the following

pt(1)
a1:a2 [{1, 2, . . . p}� {p+ 1, . . . n}] = pt(1)

a1:a2 [1, 2, . . . p]× pt(1)
a1:a2 [p+ 1, . . . n], (3.7)

we obtain a similar structure as the BDDK relation between the planar and non-planar

amplitudes at one-loop [57, 62], but the shuffle is different, since we are not dealing with full

one-loop Parke-Taylor factors yet. We define the partial non-planar one-loop Parke-Taylor

factors as

pt(1)
a1:a2 [i1, i2, . . . , ip | ip+1, . . . , n] := pt(1)

a1:a2 [{i1, i2, . . . ip}� {ip+1, . . . in}] (3.8)

= pt(1)
a1:a2 [i1, i2, . . . , ip]× pt(1)

a1:a2 [ip+1, . . . , in].

Taking the sum over the corresponding permutations we build the full non-planar one-loop

Parke-Taylor factors6 as

PT(1)
a1:a2 [π1, . . . ,πp |ρp+1, . . . ,ρn] :=

1

(a1, b1, b2,a2)

∑
α∈cyc(π)
β∈cyc(ρ)

pt(1)a1:a2 [α1, . . . ,αp |βp+1, . . . ,βn] (3.9)

=
1

(a1, b1, b2,a2)

∑
α∈cyc(π)
β∈cyc(ρ)

pt(1)a1:a2 [α1, . . . ,αp]×pt(1)a1:a2 [βp+1, . . . ,βn],

where {π1, . . . , πp} and {ρp+1, . . . , ρn} are two different generic orderings such that

{π1, . . . , πp} ∩ {ρp+1, . . . , ρn} = ∅ and {π1, . . . , πp} ∪ {ρp+1, . . . , ρn} = {1, 2, . . . , n}.
The partial and full non-planar one-loop Parke-Taylor factors defined in (3.8) and (3.9)

can be generalized, now for an arbitrary number of lists, in the following way

pt(1)
a1:a2 [i1, . . . , ip | ip+1, . . . , iq | · · · | im, . . . , in]

:= pt(1)
a1:a2 [{i1, . . . , ip}� {ip+1, . . . , iq}� · · ·� {im, . . . , in}]

= pt(1)
a1:a2 [i1, i2, . . . ip]× pt(1)

a1:a2 [ip+1, . . . iq]× · · · × pt(1)
a1:a2 [im, . . . , in], (3.10)

6Note that the partial non-planar one-loop Parke-Taylor factors for quadratic propagators can be

written as

1

(a1, b1, b2, a2)
pt(1)a1:a2 [1, 2, . . . , p |n, n− 1, . . . , p+ 1]

= (−1)n−p
(a1, a2)

(a1, b1, b2, a2)
× P̂T[1, 2, . . . , p, a1, p+ 1, . . . , n− 1, n, a2].

This expression is totally similar to the one given for non-planar linear propagators in [47, 52], where

a1 → + and a2 → −.
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and we can write the full version in terms of these like

PT(1)
a1:a2 [π1, . . . ,πp |ρp+1, . . . ,ρq | · · · |γm, . . . ,γn] (3.11)

:=
1

(a1, b1, b2,a2)

∑
α∈cyc(π)

∑
β∈cyc(ρ)

· · ·
∑

δ∈cyc(γ)

pt(1)
a1:a2 [α1, . . . ,αp |βp+1, . . . ,βq | · · · |δm, . . . , δn],

where {π1, . . . , πp}, {ρp+1, . . . , ρn}, . . .{γm, . . . , γn}, are different generic orderings such that

{π1, . . . , πp} ∪ {ρp+1, . . . , ρn} ∪ · · · ∪ {γp+1, . . . , γn} = {1, 2, . . . , n} and they are disjoint,

meaning they have no element in common. Although these generalizations are well defined

in the CHY side, we still do not have an understanding of what would be their physical

meaning. So far we have worked with tree-like expressions so the KK relations still applied,

in the following subsection we shall see the one-loop behaviour of the relations.

3.2 The BDDK relations for the one-loop Parke-Taylor factors

In the previous section we found general relations for the partial one-loop Parke-Taylor

factors, these are a sector of the KK relations. In the following section our interest lies in

finding BDDK relations that involve the full one-loop Parke-Taylor factors defined in (2.3)

and (3.9).

To obtain full one-loop Parke-Taylor factors on the right hand side of (3.9) we have to

expand the sum and collect the terms related by a cyclic permutation. The result can be

arranged again in a sum as follows

PT(1)
a1:a2 [π1, . . . , πp | ρp+1, . . . , ρn] =

∑
α∈cyc(π)�ρ/ρn

PT(1)
a1:a2 [α1, . . . , αn], (3.12)

where cyc(π)�ρ/ρn ≡ {cyc(π)�{ρp+1, . . . , ρn−1}, ρn}. As an example, for the non-planar

ordering [1, 2|3, 4, 5] we have the relation

PT(1)
a1:a2 [1, 2|3, 4, 5] = PT(1)

a1:a2 [1, 2, 3, 4, 5] + PT(1)
a1:a2 [1, 3, 2, 4, 5] + PT(1)

a1:a2 [1, 3, 4, 2, 5]

+ PT(1)
a1:a2 [2, 1, 3, 4, 5] + PT(1)

a1:a2 [3, 1, 2, 4, 5] + PT(1)
a1:a2 [3, 1, 4, 2, 5]

+ PT(1)
a1:a2 [2, 3, 1, 4, 5] + PT(1)

a1:a2 [3, 4, 1, 2, 5] + PT(1)
a1:a2 [2, 3, 4, 1, 5]

+ PT(1)
a1:a2 [3, 2, 4, 1, 5] + PT(1)

a1:a2 [3, 4, 2, 1, 5] + PT(1)
a1:a2 [3, 2, 1, 4, 5].

(3.13)

This product for two orderings has been usually denoted in the literature as

COP{πT}{ρ}, where πT is the reversed ordering of π. The proof of this result for glu-

ons subamplitudes can be found in [57], where they approach it from the string theory and

field theory sides, here we have obtained it as a consequence of the regular shuffle product

that appears at the tree-level KK relations.

Finding the relation between the full one-loop Parke-Taylor allows us to see more

clearly the bridge between CHY and the subamplitudes from the traditional field theory

approach. Another important point is that a result in [55] shows an expansion of the

planar Parke-Taylor factors at one-loop in terms of ω’s, which displays an advantage from

a computational point of view.
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Going to the more general case in (3.11), the same analysis can be performed to find

a relation with the full one-loop Parke-Taylor factors. After expanding and collecting the

terms we are left with

General BDDK relations for the full one-loop Parke-Taylor factors

PT
(1)
a1:a2 [π1, . . . , πp | ρp+1, . . . , ρq | · · · | γm, . . . , γn] =

∑
α∈cyc(π)�cyc(ρ)�...�γ/γn

PT
(1)
a1:a2 [α1, . . . , αn],

where the product of orderings follows the same definition given after (3.12). Here even

the simplest non-trivial example (that could be [1, 2|3, 4|5, 6]) gives a considerable number

of terms to fit on a single page.

4 Bi-adjoint Φ3 scalar theory

Having found the non-planar Parke-Taylor factors in the previous section, we will apply

them to the simplest non-trivial theory we can build from them, the Bi-adjoint Φ3 scalar

theory. These new factors will allow us to dive directly into the non-planar sector of the

theory. In the CHY prescription we will have a clearly defined integrand for a non-planar

amplitude, something that does not happen in the traditional formalism, and opens a new

gate to explore these interactions.

Here we propose a non-planar CHY prescription for the S-matrix at one-loop for the

bi-adjoint Φ3 scalar theory. By construction, with our Parke-Taylor factors we will be able

reproduce directly the quadratic propagators, which are the important ones if one wants

to study the behaviour of the singularities in the non-planar sector, although the analysis

of singularities is beyond the scope of the present work.

4.1 Full bi-adjoint Φ3 amplitude at one-loop

Along the line of reasoning of [47] and with the partial Parke-Taylor factors defined

in section 2, we define the full bi-adjoint Φ3 amplitude at one-loop with flavor group

U(N)×U(Ñ) as

m1−loop
n =

∫
dD`

∑
π∈Sn+2/Zn+2
ρ∈Sn+2/Zn+2

Tr(T iπ1T iπ2 · · ·T iπnT iπa1 T iπa2 )×
{

1

2n+1

∫
dΩsa1b1

×
∫

Γ
dµtn+4

(a1,a2)

(a1, b1, b2,a2)
P̂T[π1, . . . ,πn,πa1 ,πa2 ]× (b1, b2)

(a1, b1, b2,a2)
P̂T[ρ1, . . . ,ρn,ρb1 ,ρb2 ]

}
×Tr(T̃ iρ1 T̃ iρ2 · · · T̃ iρn T̃ iρb1 T̃ iρb2 ), (4.1)

where the measures, dΩ and dµt
n+4, are given by the expressions7 [3, 54]

dΩ := dD(ka1 +kb1)δ(D)(ka1 +kb1−`)dDka2 dDkb2 δ(D)(ka2 +ka1) δ(D)(kb2 +kb1), (4.2)

7In this paper we are considering that the D-dimensional momentum space is real, i.e. ki ∈ RD−1,1.

Therefore, the Dirac delta functions in (4.2) are well defined.
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and

dµt
n+4 :=

∏n+4
A=1 dσA

Vol (PSL(2,C))
× (σ1b1 σb1b2 σb21)∏n+4

A 6=1,b1,b2
EA

fixing PSL(2,C)
−−−−−−−−−−−−−−−−→

dσa1
Ea1

× dσa2
Ea2

×
n∏
i=2

dσi
Ei
× (σ1b1 σb1b2 σb21)2. (4.3)

The Γ contour is defined by the massless scattering equations

EA :=
n+4∑
B=1
B 6=A

kA · kB
σAB

= 0, A = 1, 2, . . . , n+ 4, with
n+4∑
A=1

kA = 0, (4.4)

where we are making the following identifications

n+ 1→ a1, n+ 2→ a2, n+ 3→ b1, n+ 4→ b2 . (4.5)

Finally, without loss of generality, note that in (4.3) we have fixed {σ1, σb1 , σb2} and

{E1, Eb1 , Eb2}.
It is very important to remark that the proposal given in (4.1) is well defined. After

performing the contour integral,
∫

Γ dµ
t
n+4 , the result obtained has a functional dependence

of the loop momenta couples8 like (ka1 + kb1) and (ka2 + kb2), therefore, the Dirac delta

functions in dΩ can be carried out without any inconvenience.

As it has been argued in [47], since we are looking for the forward limit with the

measure δ(D)(ka1 + ka2) × δ(D)(kb1 + kb2) in (4.2), then it requires that when summing

over the U(N) (and U(Ñ)) degrees of freedom of the two internal particles they must be

identified. Being more precise, we must introduce the sum

N2∑
ia1 ,ia2=1

δia1 ia2 ×
Ñ2∑

ib1 ,ib2=1

δib1 ib2 , (4.6)

where N2 (Ñ2) is the dimension of U(N) (U(Ñ)). Now, by using the identities9

N2∑
ia1=1

Tr(X T ia1 Y T ia1 ) = Tr(X) Tr(Y ),
N2∑
ia1=1

Tr(X Y T ia1 T ia1 ) = N Tr(XY )

Tr(Tm1 Tm2 · · · Tmp−1 Tmp) = (−1)p Tr(Tmp Tmp−1 · · · Tm2 Tm1), (4.7)

8It is guaranteed by the KK relations in (3.7) and the footnote 6. Since the partial non-planar one-loop

Parke-Taylor factors can always be written as a linear combination of the partial planar one-loop Parke-

Taylor factors then, as it was explained in the appendix A in [55], this implies the CHY-integral is always

a function of the momenta (ka1 + kb1) and (ka2 + kb2).
9The second line in (4.7) is known as the reflection identity, which is simple to check for the adjoint

representation.
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the full amplitude, m1−loop
n , becomes

m1−loop
n = 4×

{
(N Ñ)

∑
π∈Sn/Zn
ρ∈Sn/Zn

Tr(T iπ1 · · ·T iπn )×m(1−P;P)
n [π;ρ]×Tr(T̃ iρ1 · · · T̃ iρn )

+(N)

n−1∑
p=1

∑
π∈Sn/Zn

∑
γ∈Sp/Zp

δ∈Sn−p/Zn−p

Tr(T iπ1 · · ·T iπn )×m(1−P;NP)
n [π;γ|δ]

×Tr(T̃ iγ1 · · · T̃ iγp )×Tr(T̃ iδp+1 · · · T̃ iδn )

+(Ñ)

n−1∑
p=1

∑
π∈Sp/Zp

ρ∈Sn−p/Zn−p

∑
γ∈Sn/Zn

Tr(T iπ1 · · ·T iπp )×Tr(T iρp+1 · · ·T iρn )×m(1−NP;P)
n [π|ρ;γ]

×Tr(T̃ iγ1 · · · T̃ iγn )

+

n−1∑
p=1
q=1

∑
π∈Sp/Zp,γ∈Sq/Zq

ρ∈Sn−p/Zn−p,δ∈Sn−q/Zn−q

Tr(T iπ1 · · ·T iπp )×Tr(T iρp+1 · · ·T iρn )×m(1−NP;NP)
n [π|ρ;γ|δ]

×Tr(T̃ iγ1 · · · T̃ iγq )×Tr(T̃ iδq+1 · · · T̃ iδn )

}
, (4.8)

where P(NP) means planar (non-planar), m
(1−P;P)
n [π;ρ] is the same amplitude defined in [55]

as M1−loop
n [π|ρ], and the non-planar contributions, m

(1−P;NP)
n [π; γ|δ] (m

(1−NP;P)
n [π|ρ; γ])

and m
(1−NP;NP)
n [π|ρ; γ|δ] are given by

m(1−P;NP)
n [π1, . . . , πn ; γ1, . . . , γp|δp+1, . . . , δn] :=

1

2n+1

∫
dD`

∫
dΩ× sa1b1

×
∫
dµt

n+4 × ICHY
(1−P;NP)[π1, . . . , πn ; γ1, . . . , γp|δp+1, . . . , δn], (4.9)

m(1−NP;NP)
n [π1, . . . , πp|ρp+1, . . . , ρn ; γ1, . . . , γq|δq+1, . . . , δn] :=

1

2n+1

∫
dD`

∫
dΩ× sa1b1

×
∫
dµt

n+4 × ICHY
(1−NP;NP)[π1, . . . , πp|ρp+1, . . . , ρn ; γ1, . . . , γq|δq+1, . . . , δn], (4.10)

with

ICHY
(1−P;NP)[π1, . . . , πn ; γ1, . . . , γp|δp+1, . . . , δn] :=

(a1, a2) (b1, b2)

(a1, b1, b2, a2)2
(4.11)

×
∑

α∈cyc(π)

P̂T[α1, . . . , αn, a1, a2]×
∑

ξ∈cyc(γ)
ζ∈cyc(δ)

P̂T[ξ1, . . . , ξq, b1, ζq+1, . . . , ζn, b2],

ICHY
(1−NP;NP)[π1, . . . , πp|ρp+1, . . . , ρn ; γ1, . . . , γq|δq+1, . . . , δn] :=

(a1, a2) (b1, b2)

(a1, b1, b2, a2)2
(4.12)

×
∑

α∈cyc(π)
β∈cyc(ρ)

P̂T[α1, . . . , αp, a1, βp+1, . . . , βn, a2]×
∑

ξ∈cyc(γ)
ζ∈cyc(δ)

P̂T[ξ1, . . . , ξq, b1, ζq+1, . . . , ζn, b2].

Finally, the amplitude, m
(1−NP;P)
n [π|ρ ; γ], is defined in a similar way to the one given

in (4.9).
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Since the bi-adjoint theory comes with double trace, we have mixed sectors which are

not entirely non-planar. Our focus here will be in the definition of the integrands for such

sectors and how they are related to the planar sector.

In the following sections we are going to focus on these non-planar amplitudes, we will

give a few examples and define the non-planar CHY-graphs.

4.2 Non-planar bi-adjoint Φ3 amplitudes at one-loop

In the previous section we have defined the non-planar Φ3 amplitudes at one-loop. In [55],

a technology to deal with this type CHY structures and graphs was developed, one of the

ideas to remember from there is that by integrating a CHY integrand we can obtain several

Feynman integrands and therefore all the information about the possible interactions at a

certain order. For the planar case the relation CHY-graphs/Feynman-diagrams was mainly

one-to-one, no on the non-planar case we will see that is not the case any more, but again a

non-planar CHY diagram contains all the information for the interactions at that level. The

new integrands that we have to deal with are ICHY
(1−P;NP)[π ; γ|δ] and ICHY

(1−NP;NP)[π|ρ ; γ|δ], so

let us see how the look by using the Parke-Taylor factors we found in 3.

From the identity in footnote 6, it is straightforward to see

ICHY
(1−P;NP)[π1, . . . ,πn ; γ1, . . . ,γp|δp+1, . . . , δn]

= PT(1)
a1:a2 [π1, . . . ,πn]×PT

(1)
b1:b2

[γ1, . . . ,γp |δn, δn−1, . . . , δp+1], (4.13)

ICHY
(1−NP;NP)[π1, . . . ,πp|ρp+1, . . . ,ρn ; γ1, . . . ,γq|δq+1, . . . , δn]

= PT(1)
a1:a2 [π1, . . . ,πp |ρn,ρn−1, . . . ,ρp+1]×PT

(1)
b1:b2

[γ1, . . . ,γq |δn, δn−1, . . . , δq+1]. (4.14)

So, for convenience we define:

Definition. The non-planar partial amplitudes, M(1−P;NP)
n [π; γ|δ] and M

(1−NP;NP)
n [π|ρ; γ|δ],

for bi-adjoint Φ3 scalar theory are defined as

M(1−P;NP)
n [π1, . . . , πn ; γ1 . . . , γp | δp+1, . . . , δn]

:= m(1−P;NP)
n [π1, . . . , πn ; γ1 . . . , γp | δn, . . . , δp+1], (4.15)

M(1−NP;NP)
n [π1, . . . , πp|ρp+1, . . . , ρn ; γ1 . . . , γq | δq+1, . . . , δn]

:= m(1−NP;NP)
n [π1, . . . , πp|ρn, . . . , ρp+1 ; γ1 . . . , γq | δn, . . . , δq+1]. (4.16)

In a similar way we define M
(1−NP;P)
n [π|ρ ; γ].

In the next section we will present some examples, which can be directly compared

with the field theory results.

5 Examples and non-planar CHY-graphs

Let us now translate the integrands we just introduced into their corresponding CHY-

graphs in order to get more information from them. In this section we compute some

particular examples for lower number of points, n = 4, 5 by using the new proposal given

in section 4.2. Moving forward, we will define and analyse the more general structure of

the non-planar CHY-graphs at one-loop in a simple way, which will be presented in the

next section.
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Before giving the examples, it is useful to introduce the line notation10

"m" anti - lines

�
1

1

2

2

�

�

�

�

, (5.1)

where the number of anti-lines “m” is equal to, m = # lines−4. Finally, in order to obtain

a more compact notation, we bring in the following definitions

−−−−−−−−−→
[1, 2, . . . , n] :=

 l 
1

2

3

4
5

n

=
1

`2(`+ k1)2(`+ k1 + k2)2 · · · (`+ k1 + k2 + · · ·+ kn−1)2
,

(5.2)

and

TREE1

TREE2

TREEp

TREEn

≡
 l   

TREE1

TREE2

TREEp

TREEn

+

 l   
TREE1

TREE2

TREEp

TREEn

+· · ·+  

l   

TREE1

TREE2

TREEp

TREEn

=
−−−−−−−−−−−−−−−−−→
[tree1,tree2, . . . ,treen] +

−−−−−−−−−−−−−−−−−→
[tree2, . . . ,treen,tree1] +· · ·+

−−−−−−−−−−−−−−−−−−−−−→
[treen,tree1, . . . ,tree(n−1)] ,

(5.3)

where the arrow over the bracket,
−−→
[. . .] , means the transit of the loop momentum “`” and

“tree i” is a generic Feynman diagram at tree level. For simplicity in the notation we omit

the integral,
∫
dD`.

Finally, in order to obtain a correspondence between the CHY-graphs for non-planar

bi-adjoint scalar theory and Feynman diagrams at one-loop, we follow the same procedure

performed in [55], i.e. we will carry out a power expansion11 of PT
(1)
a1:a2 [· · · ] in terms of

ωa1:a2
i:j , while for PT

(1)
b1:b2

[· · · ] we will use its original definition.

5.1 Four-point

First of all, we analyse the simplest example, the four-point computation.12

Let us consider the NP; P contribution, which is given by the expression

M
(1−NP;P)
4 [1, 2|3, 4 ; 1, 2, 3, 4] =

1

24+1

∫
dΩ× sa1b1

×
∫
dµt

4+4 PT(1)
a1:a2 [1, 2|3, 4]× PT

(1)
b1:b2

[1, 2, 3, 4]. (5.4)

10This line is the same square defined in [55].
11Note that the lowest power of that expansion for the non-planar Parke-Taylor factors is four, it is a

consequence of the Theorem 1 in [55].
12In appendix B we carry out the four-point computation using the Feynman rules.

– 15 –



J
H
E
P
0
5
(
2
0
1
8
)
0
5
5

Since we have the identity, PT
(1)
a1:a2 [1, 2|3, 4] = 1

(a1,b1,b2,a2) × ω
a1:a2
1:1 ωa1:a2

2:2 ωa1:a2
3:3 ωa1:a2

4:4 , which

has been shown in [55], it is simple to draw the CHY-graphs

M
(1−NP;P)
4 [1,2|3,4;1,2,3,4] =

1

25

∫
dΩsa1b1

∫
dµt

4+4



1

2

3

4

+cyc(1,2,3,4)


.

(5.5)

These kind of graphs were already computed in [55] and the answer is

M
(1−NP;P)
4 [1, 2|3, 4 ; 1, 2, 3, 4] =

1

2

3

4 . (5.6)

Now, we compute the NP; NP part of the four-point case. Let us consider the amplitude

M
(1−NP;NP)
4 [1,2|3,4; 1,2|3,4] (5.7)

=
1

24+1

∫
dΩ×sa1b1

∫
dµt

4+4 PT(1)
a1:a2 [1,2|3,4]×PT

(1)
b1:b2

[1,2|3,4]

=
1

25

∫
dΩsa1b1

∫
dµt

4+4

1

(a1, b1, b2,a2)2
(ωa1:a2

1:1 ωa1:a2
2:2 ωa1:a2

3:3 ωa1:a2
4:4 )×(ωb1:b2

1:1 ωb1:b2
2:2 ωb1:b2

3:3 ωb1:b2
4:4 ) ,

where we have used the same identity as in the above example. This CHY-integral was

computed by one of the authors in [54] and the result is

M
(1−NP;NP)
4 [1, 2|3, 4 ; 1, 2|3, 4] =

1

2

3

4 + per(2, 3, 4) . (5.8)

Next, in order to compare this example with the previous one and to obtain more infor-

mation from it, we use the same procedure as in (5.5). Thus, on the a-sector we apply the

identity, PT
(1)
a1:a2 [1, 2|3, 4] = (a1, b1, b2, a2)−1×ωa1:a2

1:1 ωa1:a2
2:2 ωa1:a2

3:3 ωa1:a2
4:4 , but, on the b-sector

we use the definition given in (3.9), therefore we have the graph expansion

M
(1−NP;NP)
4 [1,2 |3,4; 1,2 |3,4] =

1

25

∫
dΩsa1b1

∫
dµt

4+4



1

2

3

4

+(1↔ 2)

+(3↔ 4)

+(1↔ 2)×(3↔ 4)


.

(5.9)
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The CHY-graphs obtained above are a new type of graphs, which will be called13 the non-

planar CHY-graphs (or butterfly graphs). Using the Λ-algorithm developed by one of the

authors in [37], we can compute this butterfly graph in a simple way, and the result is

(see appendix A)

1

25

∫
dΩ× sa1b1

∫
dµt

4+4

1

2

3

4

=

1

2

3

4
l

+
l
1

2

34 +

1

2 3

4

l

+ 1

2

3

4
l

+ 12

3

4

l
+

1

2

3

4
l

=
−−−−−−→
[1, 2, 3, 4] +

−−−−−−→
[1, 3, 2, 4] +

−−−−−−→
[1, 3, 4, 2] +

−−−−−−→
[3, 1, 2, 4] +

−−−−−−→
[3, 1, 4, 2] +

−−−−−−→
[3, 4, 1, 2]

=
−−−−−−−−−→
[1, 2]� [3, 4] . (5.10)

This interesting result is generalized in section 6. Certainly, by summing the four butterfly

graphs from (5.9), one obtains the same answer as in (5.8).

Notice that we have not used the Parke-Taylor identities found in section 3.2 in the

above examples, for instance

PT(1)
a1:a2 [1, 2|3, 4] = PT(1)

a1:a2 [1, 2, 3, 4] + PT(1)
a1:a2 [1, 3, 2, 4] + PT(1)

a1:a2 [3, 1, 2, 4] (5.11)

+ PT(1)
a1:a2 [2, 1, 3, 4] + PT(1)

a1:a2 [2, 3, 1, 4] + PT(1)
a1:a2 [3, 2, 1, 4] .

We could do that and then to apply the technology developed in [55]. However, this

procedure is longer and tedious, we would also lose the correspondence between the non-

planar CHY-graphs and Feynman diagrams at one-loop.

What the previous paragraph is actually telling us, is that we have found a nice way

to embed the BDDK identities into a single expression, all this from the relations we found

at the level of the Parke-Taylor factors in section 3. From the CHY approach, we can

find all the interactions that are involved in the non-planar sector directly by solving the

corresponding CHY integrand. Since the 4-point case is so simple and just showed us one

type of interaction (the non-planar CHY-graph gave just boxes), let us take a look to a

nontrivial example, the 5-point case, where more interactions shall appear.

13Note that the graph in (5.9) is like a double copy of the graph in (5.5) without the connection between

σb1 and σb2 .
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5.2 Five-point

In this section we will consider a less trivial example, the five-point case computations. This

example is richer than the previous one, here we will see different interactions appearing

in the non-planar sector. Diagrams with trees will be attached to the loop will appear

now, but those tree diagrams should satisfy certain conditions imposed by the structure of

the gauge group, all of this now embedded into the non-planar Parke-Taylor factors (this

argument will become clear in the next section). The first contributing integrand we will

take into consideration is the mixed non-planar-planar case, it is given by

M
(1−NP;P)
5 [1, 2|3, 4, 5 ; 1, 2, 3, 4, 5] =

1

25+1

∫
dΩ× sa1b1

×
∫
dµt

5+4 PT(1)
a1:a2 [1, 2|3, 4, 5]× PT

(1)
b1:b2

[1, 2, 3, 4, 5].

(5.12)

From the results found in [55], it is straightforward to check the identity

PT(1)
a1:a2 [1,2|3,4,5] =

1

(a1, b1, b2,a2)
×(ωa1:a2

1:1 ωa1:a2
2:2 )×

(
2ωa1:a2

3:3 ωa1:a2
4:4 ωa1:a2

5:5

+
σ34σ45ω

a1:a2
5:3

(3,4,5)
ωa1:a2

4:4 +
σ45σ53ω

a1:a2
3:4

(3,4,5)
ωa1:a2

5:5 +
σ53σ34ω

a1:a2
4:5

(3,4,5)
ωa1:a2

3:3

)
,

(5.13)

so, using the definition, PT
(1)
b1:b2

[1, 2, 3, 4, 5] = 1
(a1,b1,b2,a2)

[
ωb1:b21:2

1
σ23σ34σ45σ51

+ cyc(1, 2, 3, 4, 5)
]
,

we obtain the graph expansion

M
(1−NP;P)
5 [1, 2|3, 4, 5 ; 1, 2, 3, 4, 5] =

1

26

∫
dΩ× sa1b1 ×

∫
dµt

5+4
2×

5

1

2

3

4 +

5

1

2

3

4 +

5

1

2

3

4

+

5

1

2

3

4

+ cyc


,

(5.14)

here “cyc” stands for cyclic permutations of the labels, (1, 2, 3, 4, 5), but by keeping the

connection among them. Note that the graphs in (5.14) are totally similar to the ones

obtained in [55], equation (5.3). In fact, the only new graph is the second one, which is a

generalization of the graph in proposition 3 of [55]. Following the same procedure that was

applied there, we multiply this graph by the cross-ratio identity, 1 = −σ53 ω
a1:a2
3:5 +

σ5a1σ3a2
σ3a1σ5a2

,

therefore the second term in (5.13) becomes

σ34 σ45 ω
a1:a2
5:3

(3, 4, 5)
ωa1:a2

4:4 × 1 = −ωa1:a2
3:3 ωa1:a2

4:4 ωa1:a2
5:5 +

σ34 σ45 ω
a1:a2
3:5

(3, 4, 5)
ωa1:a2

4:4 , (5.15)
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and the graph turns into

5

1

2

3

4 = −

5

1

2

3

4 +

5

1

2

3

4 . (5.16)

The second resulting graph is a generalization of the one given in proposition 2 of [55].

This graph is simple to compute using the Λ-algorithm and it vanishes. So, the M
(1−NP;P)
5

amplitude can now be written as

M
(1−NP;P)
5 [1, 2|3, 4, 5 ; 1, 2, 3, 4, 5] =

1

26

∫
dΩ× sa1b1×

∫
dµt

5+4


5

1

2

3

4 +

5

1

2

3

4

+

5

1

2

3

4

+ cyc


, (5.17)

where all these graphs were already mapped to Feynman diagrams in [55]. Thus, the final

answer is

M
(1−NP;P)
5 [1, 2|3, 4, 5 ; 1, 2, 3, 4, 5]

=

1

2

3

5

4

+

1

2 5

43

+

1

2
5

4

3

. (5.18)

Next, we compute the NP; NP contribution to the five-point case. Let us consider the

amplitude

M
(1−NP;NP)
5 [1, 2|3, 4, 5 ; 1, 2|3, 4, 5] =

1

25+1

∫
dΩ× sa1b1

×
∫
dµt

5+4 PT(1)
a1:a2 [1, 2|3, 4, 5]× PT

(1)
b1:b2

[1, 2|3, 4, 5] .

(5.19)

Such as it was done previously, we use the expansion given in (5.13) for PT
(1)
a1:a2 [1, 2|3, 4, 5]
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and the original definition for PT
(1)
b1:b2

[1, 2|3, 4, 5] written in (3.9), i.e.

PT(1)
a1:a2 [1,2|3,4,5] =

1

(a1, b1, b2,a2)
×(ωa1:a2

1:1 ωa1:a2
2:2 ) (5.20)

×
(

2ωa1:a2
3:3 ωa1:a2

4:4 ωa1:a2
5:5 +

σ45σ53ω
a1:a2
3:4

(3,4,5)
ωa1:a2

5:5 +
σ34σ45ω

a1:a2
5:3

(3,4,5)
ωa1:a2

4:4 +
σ53σ34ω

a1:a2
4:5

(3,4,5)
ωa1:a2

3:3

)
,

PT
(1)
b1:b2

[1,2|3,4,5] =
1

(a1, b1, b2,a2)
×
(

1

σ21
ωb1:b2

1:2 +
1

σ12
ωb1:b2

2:1

)
×
(

1

σ45σ53
ωb1:b2

3:4 +
1

σ53σ34
ωb1:b2

4:5 +
1

σ34σ45
ωb1:b2

5:3

)
. (5.21)

Thus, one obtains the graph expansion

M
(1−NP;NP)
5 [1,2|3,4,5; 1,2|3,4,5] =

1

26

∫
dΩ×sa1b1×

∫
dµt

5+4
2×5

1

2

3

4

+ 5

1

2

3

4

+

5

1

2

3

4

+

5

1

2

3

4

+(1↔ 2)

+cyc(3,4,5)

+(1↔ 2)×cyc(3,4,5)


.

(5.22)

The first, third and fourth CHY-graphs are a generalization of the butterfly graph that

was found in the above section, equation (5.9). On the other hand, the second CHY-graph

is a combination between the butterfly graph and the graph in proposition 3 of [55]. So,

by multiplying this graph by the cross-ratio identity, 1 = −σ34 ω
a1:a2
4:3 +

σ3a1σ4a2
σ4a1σ3a2

, the second

term in (5.20) becomes

σ45 σ53 ω
a1:a2
3:4

(3, 4, 5)
ωa1:a2

5:5 × 1 = −ωa1:a2
3:3 ωa1:a2

4:4 ωa1:a2
5:5 +

σ45 σ53 ω
a1:a2
4:3

(3, 4, 5)
ωa1:a2

5:5 , (5.23)

and the graph turns into

5

1

2

3

4

= − 5

1

2

3

4

+ 5

1

2

3

4

. (5.24)

Like it happened in the previous example, the second resulting graph is a mixing between

the butterfly graph and the one given in proposition 2 of [55]. The result for this graph is
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again zero. Therefore, we can now write the M
(1−NP;NP)
5 amplitude as

M
(1−NP;NP)
5 [1, 2|3, 4, 5 ; 1, 2|3, 4, 5] =

1

26

∫
dΩ× sa1b1 ×

∫
dµt

5+4
5

1

2

3

4

+

5

1

2

3

4

+

5

1

2

3

4

+ (1↔ 2)

+ cyc(3, 4, 5)

+ (1↔ 2)× cyc(3, 4, 5)


.

(5.25)

Certainly, we have been able to rewrite the M
(1−NP;NP)
5 amplitude just in terms of butterfly

graphs (non-planar CHY-graphs), in the same way as it was made for M
(1−NP;NP)
4 . The

computation of these graphs is completely similar to the one performed in (5.10) which

leads to

1

26

∫
dΩsa1b1

∫
dµt

5+45

1

2

3

4

=
 l   

1

2

35

4
+

 l   

1

2

3

5

4
+

 l   

1

2

3

5

4 +(7terms)

=
−−−−−−−−−−→
[1,2]�[3,5,4] , (5.26)

1

26

∫
dΩsa1b1

∫
dµt

5+4

5

1

2

3

4

=
 l   

1

2

5

4

3

+
 l   

1

2

5
4

3
+

 l   

1

2
5

4

3
+(3terms)

=
−−−−−−−−−−→
[1,2,{3,5},4] +

−−−−−−−−−−→
[1,{3,5},2,4] +

−−−−−−−−−−→
[1,{3,5},4,2] +· · ·=

−−−−−−−−−−−−→
[1,2]�[{3,5},4] , (5.27)

1

26

∫
dΩsa1b1

∫
dµt

5+4

5

1

2

3

4

=
 l   

1

2
5

4

3

+
 l   

1

2

5

4
3 +

 l   

1

2

54

3 +(3terms)

=
−−−−−−−−−−→
[1,2,3,{5,4}] +

−−−−−−−−−→
[1,3,2{5,4}] +

−−−−−−−−−−→
[1,3,{5,4},2] +· · ·=

−−−−−−−−−−−−→
[1,2]�[3,{5,4}] , (5.28)

where we have denoted {3, 5}, {5, 4} and {4, 3} the tree level sector. Therefore, the final

answer is given by

M
(1−NP;NP)
5 [1, 2|3, 4, 5 ; 1, 2|3, 4, 5] = S[1, 2|3, 5, 4] + S[1, 2|5, 4, 3] + S[1, 2|4, 3, 5]

S[2, 1|3, 5, 4] + S[2, 1|5, 4, 3] + S[2, 1|4, 3, 5] , (5.29)

where we have defined S[a1, a2|a3, a4, a5] as

S[a1,a2|a3,a4,a5]≡
−−−−−−−−−−−−−−→
[a1,a2]�[a3,a4,a5] +

−−−−−−−−−−−−−−−−→
[a1,a2]�[{a3,a4},a5] +

−−−−−−−−−−−−−−−−→
[a1,a2]�[a3,{a4,a5}] .

(5.30)
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It is simple to check the total number of Feynman diagrams in (5.29) is,14 60 pentagons

+72 boxes = 132, while in the CHY representation we only have 18 CHY-graphs (equa-

tion (5.25)).

Finally, looking at the results obtained in this section, it is interesting to note that

the amplitudes, M
(1−NP;P)
4 [1, 2|3, 4 ; 1, 2, 3, 4] and M

(1−NP;P)
5 [1, 2|3, 4, 5 ; 1, 2, 3, 4, 5], can be

found from the intersection15

M
(1−NP;P)
4 [1,2|3,4;1,2,3,4] =M

(1−NP;NP)
4 [1,2|3,4;1,2|3,4]∩M(1−P;P)

4 [1,2,3,4;1,2,3,4],

M
(1−NP;P)
5 [1,2|3,4,5;1,2,3,4,5] =M

(1−NP;NP)
5 [1,2|3,4,5;1,2|3,4,5]∩M(1−P;P)

5 [1,2,3,4,5;1,2,3,4,5],

such as it was done in the planar case, [46, 55]. Although we do not have a formal proof,

there are evidences that the previous intersection relation could be applied to higher number

of points, therefore we conjecture the following general relation, up to an overall sign

M(1−NP;NP)
n [α|β ; γ|δ] = M(1−NP;NP)

n [α|β ; α|β] ∩ M(1−NP;NP)
n [γ|δ ; γ|δ] . (5.31)

where the ordered lists, α = {α1, . . . , αi}, β = {β1, . . . , βj}, γ = {γ1, . . . , γk} and

δ = {δ1, . . . , δm}, satisfy the conditions, α∩β = γ∩δ = ∅ and α∪β = γ∪δ = {1, 2, . . . , n}.
In the following section we will generalize the previous results to an arbitrary number of

points. Additionally, it is useful to remind that all computations were checked numerically.

6 General non-planar CHY-graphs

We have found a new type of CHY-graphs at one-loop, the non-planar CHY-graphs (or

butterfly graphs). Those type of graphs could be identified as a generalization of the planar

case obtained in [55]. In addition, let us recall that when the CHY-integrand associated

to a planar CHY-graph is integrated, its result is a sum of Feynman diagrams at one-loop.

This fact is summarized by the equality

1

2N+1

∫
dΩ×sa1b1×

∫
dµt

N+4

1 2

�

�

N

�

�

T 1

T 2

T n

=

T n

�

�

�

�

 l
1

2

N

Pn

T 1

T 2

,

(6.1)

14Under the equivalence relation given by the loop momentum shifting in (5.3), there are 12 nonequivalent

pentagons and 18 nonequivalent boxes. In addition, note that these 12 nonequivalent pentagons are in perfect

agreement with the expansion given in (3.13) for PT
(1)
a1:a2 [1, 2|3, 4, 5].

15This equality is given up to an overall sign.
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where the grey circles mean the sum over all possible trivalent planar diagrams16 (Ti),

the symbol “Pn” in the loop circle denotes a regular polygon of n-edges and “N” is total

number of particles.

We can make an importan remark here. The tree diagrams attached to the loop satisfy

two conditions: 1) they cannot have particles from the two orderings, and 2) one tree cannot

contain all the particles belonging to one ordering. This is known from the structure of the

gauge group, but here it appears from the Parke-Taylor factors. From the expression (3.9)

we can apply an expansion in ω for each individual ordering, like we showed in [55], this

will give us the contributing type of diagrams, effectively satisfying the previous conditions.

From the butterfly graphs obtained in (5.9) and (5.25), we generalize the planar CHY-

graph in (6.1) to the non-planar case. Additionally, by using the Λ-algorithm, it is straight-

forward to compute this new kind of graph. Thus, a general butterfly graph and its result

in terms of Feynman diagrams is given by the expression

1

2N+1

∫
dΩsa1b1

∫
dµt

N+4

�

��
1 2

N

�+ �

�

T p+1 T 1

T pT n

=

�

�

�

�+ �

�

 l
1

2

N

N - 1

T 1

T p

T p+1
T n

Pn

+

{[(
n

p

)
−1

]
terms

}
,

=
−−−−−−−−−−−−−−−−−−−−→
[T1, . . . ,Tp]�[Tp+1, . . . ,Tn] ,

(6.3)

where, as in (6.1), the grey circles mean the sum over all possible trivalent planar diagrams

(Ti), “Pn” denotes a regular polygon of n-edges and “N” is the total number of particles.

Finally, using the results found in [55] and the CHY-graphs representation obtained

for M1−NP:NP
4 [1, 2|3, 4 ; 1, 2|3, 4] and M1−NP:NP

5 [1, 2|3, 4, 5 ; 1, 2|3, 4, 5] in (5.9) and (5.25)

respectively, we formulate a general expression for M1−NP;NP
N [α|β ; α|β]. To be precise, up

16As it is very well known, at tree-level there is a map between the CHY-graphs and Feynman diagrams

given by

∫
dµt

n

5

4

3

2

1

n

=

�

1

2n , (6.2)

where the grey circle means the sum over all possible trivalent planar diagrams with the ordering

(1, 2, . . . , n).
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to an overall sign, we propose the following expression

M1−NP:NP
N [α|β;α|β] =

1

2N+1

∫
dΩsa1b1

∫
dµtree

N+4

|α|, |β|∑
a=2
b=2

∑
i

NPchya;b
(α|β)[[i]]+cyc(α)×cyc(β)

,
(6.4)

where the ordered lists α and β are given by, α = {1, 2, . . . , p} and β = {p+1, p+2, . . . , N},
|α| and |β| are the lengths of the lists, i.e. |α| = p and |β| = N − p, and we have defined

the set, NPchya:b
(α|β), as

NPchya:b(α|β) :=


All possible non-planar CHY graphs with the form

3
�

��
1

2

N �+ �

�+ �

�

11

a

α - sectorβ - sector

b


,

(6.5)

being NPchya:b
(α|β)[[i]] the i-th element in NPchya:b

(α|β). For instance

NPchy3:3
(1,2,3|4,5,6) =


5

1

2

3

4

6

 , (6.6)

NPchy3:2
(1,2,3|4,5,6) =


5

1

2

6

3

4

,

5

1

2

6

3

4

. (6.7)

This is clear that (6.4) is in agreement with (5.9) and (5.25).

We can now summarise the results obtained in this work in the following and final

section.

7 Discussions

In this paper we continued the program to obtain one-loop quadratic Feynman propagators

directly from CHY prescription, now into the non-planar sector of the amplitudes. Studying

the one-loop Parke-Taylor factors presented in [55], we found the well known KK relations

for amplitudes in momentum space, now in the context of functions of σ − variables in

CHY formalism. These relations allowed a generalization, and from then on we found the

BDDK relations at one-loop level, that leaded us also to obtain a generalization to the

multi-trace one-loop Parke-Taylor factors, which as a special case have the double-trace

one, called the non-planar one-loop Parke-Taylor factors.
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The BDDK relations have been traditionally used to obtain the subleading order con-

tributions at one-loop in terms of leading ones. What we have done here, is exploit the

BDDK relations and as a consequence of them obtain a remarkable result, the non-planar

CHY-graphs. There is not an equivalent of these graphs in the traditional formalism and

among the advantages they offer we have:

• The BDDK relations are already embedded on them, so we only need to integrate

their corresponding integrand to obtain all the contributing interactions in the non-

planar sector.

• The subleading order can now be written directly in terms of these graphs, since they

encode all the information for this order in a fewer number of graphs, offering a more

compact presentation in comparison to Feynman diagrams.

• Easier computation and generalization for higher number of points.

• Using intersections between graphs the amplitudes for mixed orderings can be ob-

tained in a straightforward way.

We applied the non-planar CHY-graphs in the study of the bi-adjoint scalar theory at

one-loop. We have found all there is to know, as far as we understand, for this theory at

that loop order, at the level of Feynman integrands with on-shell external particles.

There are several directions to move on from the developments we have done in this

paper. We are ready to apply all the technology we have developed in the study of the

Yang-Mills theory and gravity at one-loop with quadratic Feynman propagators. Since the

Parke-Taylor factors enter into the CHY integrand for Yang-Mills like

IYM
(1−P)(1, 2, . . . , n) = PT(1)

a1:a2 [1, 2, . . . , n]×
∑
ρ∈Sn

na2,b2|ρ1···ρn|b1,a1
pt

(1)
b1:b2

[ρ1, . . . , ρn]

(a1, b1, b2, a2)
,

where na2,b2|ρ1···ρn|b1,a1 are the BCJ numerators, which must be found (see [51, 52] for the

linear representation), we can apply the developments of this work directly by replacing

the planar Parke-Taylor factor by the non-planar one, obtaining the integrand for the

non-planar sector of Yang-Mills like

IYM
(1−NP)(1, 2, . . . , i; i+ 1, . . . , n)

= PT(1)
a1:a2 [1, 2, . . . , i; i+ 1, . . . , n]×

∑
ρ∈Sn

na2,b2|ρ1···ρn|b1,a1
pt

(1)
b1:b2

[ρ1, . . . , ρn]

(a1, b1, b2, a2)
.

This can be done in a straightforward manner, because the Pfaffian,
∑

ρ∈Sn na2,b2|ρ1···ρn|b1,a1
pt

(1)
b1:b2

[ρ1,...,ρn]

(a1,b1,b2,a2) , does not have anything to do with the ordering.

The BDDK relations we have found here play an important role in a version of the BCJ

duality we are currently working on. The study of the BCJ duality have already been done

for the case of linear propagators [52, 53], so it will be very interesting comparison to make.
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Another important direction, is going to higher number of loops for the Parke-Taylor

factors. There, we could study the relations that may exist among them, that is another

work in progress. There is not much study done in this part at the moment.

Since we have found a way to encode all the one-loop information in a fewer number

of CHY-graphs(integrands), it would be desirable to be able, or understand the viability,

of performing the loop integration before the contour integration in the σ − variable, this

could lead to a new and more compact way of calculating loop corrections, and could lead to

a better understanding of the singularities in the non-planar sector, a topic not completely

understood, except for some particular cases.
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A Four-point non-planar CHY-graph computation

In this appendix we will work out an example using the Λ-algorithm in order to compute

the non-planar CHY-graphs. Since that the Λ-algorithm is a graphical method we can

omit the integral
∫
dµt

4+4.

The simplest non-trivial example is the four-point case computation obtained in (5.9).

Applying the Λ-rules presented in [37], we identify that there are three non-zero cuts

given by

1

2

3

4

=

1

2

3

4 cut - 1

+

1

2

3

4 cut - 2

+

1

2

3

4
cut - 3

. (A.1)

Note that in this paper we have used this gauge fixing for all graphs, which was very

useful in the planar case [55]. However, for the non-planar case this gauge is not as

efficient. Although it is not evident at first sight, the cuts in (A.1) generate non-trivial

CHY-subgraphs with spurious poles. Thus, we are going to choose a new gauge fixing

which produces CHY-subgraphs with only physical poles.

Let us fix the punctures {σ1, σ2, σ3} by PSL(2,C), and the puncture {σ4} by scaling

symmetry. Under this gauge fixing, the non-planar graph becomes

1

2

3

4

=

1

2

3

4
cut - 1

+

1

2

3

4
cut - 2

+

1

2

3

4 cut - 3

. (A.2)
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The above cuts are straightforward to be computed and give

1

2

3

4
cut - 1

=
2

(ka1 +kb1 +k1+k2)2
×


��

[�� �� ��� �� ]

1

2

��

×


3

4

[�� �� ��� �� ]

��

��

 , (A.3)

1

2

3

4
cut - 2

=
2

(ka1 +kb1 +k3+k4)2
×



1

2

[�� �� ��� �� ]

��

��

×


��

[�� �� ��� �� ]

3

4

��

 , (A.4)

1

2

3

4 cut - 3

=
2

(ka1 +kb1 +k1+k3)2
×

 13

[�� �� ��� �� ]

��

��
×

 24

[�� �� ��� �� ]

��

��

 .
(A.5)

Note that the CHY-subgraphs obtained in (A.3) and (A.4) have the same structure as the

one given in (6.1), which was computed in datail in [55]. So, the final answer for cut-1 and

cut-2 is

cut− 1 =
25

sa2b2 sa1b1 s1a1b1 s12a1b1 s123a1b1

,

cut− 2 =
25

sa2b2 sa1b1 s3a1b1 s34a1b1 s341a1b1

.

On the other hand, the subgraphs in (A.5) have the same form as the ones studied in [54].

The computation of these subgraphs is straightforward and the total result of the cut-3 is

given by

cut− 3 =
25

sa2b2 sa1b1 s13a1b1

(
1

s1a1b1

+
1

s3a1b1

)
×
(

1

s132a1b1

+
1

s134a1b1

)
.

Adding the cuts, (cut− 1) + (cut− 2) + (cut− 3), we obtain the final result for this four-

point non-planar CHY-graph, namely
1

2

3

4

=
25

sa2b2 sa1b1

(
1

s1a1b1 s12a1b1 s123a1b1
+

1

s1a1b1 s13a1b1 s132a1b1
+

1

s1a1b1 s13a1b1 s134a1b1

+
1

s3a1b1 s31a1b1 s312a1b1
+

1

s3a1b1 s31a1b1 s314a1b1
+

1

s3a1b1 s34a1b1 s341a1b1

)
.

Therefore, by carrying out the integral, 1
25

∫
dΩ sa1b1 , it is trivial to check the previous

expression becomes (5.10).

Finally, note that this gauge fixing can be applied to higher number of points.

– 27 –



J
H
E
P
0
5
(
2
0
1
8
)
0
5
5

Φbb′

2

Φcc′

3 =

Φaa′

1

f abcf̃ a′b′c′

Figure 4. Standard Feynman three-vertex in the bi-adjoint theory.

k1 k2

k3k4

Figure 5. Irreducible contribution to the one-loop four-point amplitude.

B Four-point amplitude from the Feynman rules

In this appendix we calculate the four-point amplitude from the standard Feynman rules

to compare with our final results based on the master formulas we obtained in previous

sections. We have the following Lagrangian for the bi-adjoint scalar field theory

L =
1

2
∂µΦaa′∂µΦaa′ +

1

3!
fabcf̃a

′b′c′Φaa′Φbb′Φcc′ , (B.1)

in which we have the following Lie algebra

[T a, T b] = ifabcT c , [T̃ a, T̃ b] = if̃abcT̃ c , (B.2)

with two sets of generators {T a} and {T̃ a} and their corresponding structure constants,

fabc and f̃abc [32]. In this theory we only have the following three-vertex to be used for con-

structing tree- and loop-level diagrams, see [4] for some examples in tree-level amplitudes.

In this paper we are interested in one-loop amplitudes in bi-adjoint scalar field theory,

especially its non-planar contributions. The first one-loop diagram with non-planar coun-

terpart in this theory is the four-point amplitude which will be constructed using the above

three-vertex to compare with the CHY results in section 5.1. After sewing four copies of

the three-vertex in figure 4 we get the irreducible contribution to the four-point amplitude

depicted in figure 5 which leads to the following representation

AIrr[k1, k2, k3, k4]

= δD

(
4∑
i=1

ki

)
N2∑

b,c,d,e=1

f ca1b f ba2d fda3e f ea4c
Ñ2∑

b′,c′,d′,e′=1

f̃ c
′a′1b

′
f̃ b
′a′2d

′
f̃d
′a′3e

′
f̃ e
′a′4c

′

×
∫

dDl

(2π)D
1

l2[l + k2]2[l + k2 + k3]2[l − k1]2
. (B.3)
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After using identities in (4.7) for the natural ordering of the external scalars in the loop

(canonical ordering: 1234) we get

N2∑
b,c,d,e=1

f ca1b f ba2d fda3e f ea4c

=
∑
b,c,d,e

tr(T c[T a1 , T b]) tr(T b[T a2 , T d]) tr(T d[T a3 , T e]) tr(T e[T a4 , T c])

= 2Ntr(T a1T a2T a3T a4) + 2tr(T a1T a2)tr(T a3T a4)

+ 2tr(T a1T a3)tr(T a2T a4) + 2tr(T a1T a4)tr(T a2T a3) , (B.4)

and

Ñ2∑
b′,c′,d′,e′=1

f̃ c
′a′1b

′
f̃ b
′a′2d

′
f̃d
′a′3e

′
f̃ e
′a′4c

′
= 2Ñtr(T̃ a

′
1 T̃ a

′
2 T̃ a

′
3 T̃ a

′
4) + 2tr(T̃ a

′
1 T̃ a

′
2)tr(T̃ a

′
3 T̃ a

′
4)

+ 2tr(T̃ a
′
1 T̃ a

′
3)tr(T̃ a

′
2 T̃ a

′
4) + 2tr(T̃ a

′
1 T̃ a

′
4)tr(T̃ a

′
2 T̃ a

′
3) ,

(B.5)

where N2 (Ñ2) is the dimension of U(N) (U(Ñ)). Now if we exclude the fully planar part

of (B.3) the rest of the amplitude gives

A′Irr[k1, k2, k3, k4] = δD
( 4∑
i=1

ki

)
T′

1234
∫

dDl

(2π)D
1

l2[l + k2]2[l + k2 + k3]2[l − k1]2
. (B.6)

We define

T′
1234

= T′
1234−P;NP

+ T′
1234−NP;P

+ T′
1234−NP;NP

, (B.7)

in which

T1234−P;NP = 4Ntr(T a1T a2T a3T a4)
{

tr(T̃ a1 T̃ a2)tr(T̃ a3 T̃ a4) + tr(T̃ a1 T̃ a3)tr(T̃ a2 T̃ a4)

+ tr(T̃ a1 T̃ a4)tr(T̃ a2 T̃ a3)
}
, (B.8)

represents the mixed planar-nonplanar (P; NP) part,

T1234−NP;P = 4Ñtr(T̃ a1 T̃ a2 T̃ a3 T̃ a4)
{

tr(T a1T a2)tr(T a3T a4) + tr(T a1T a3)tr(T a2T a4)

+ tr(T a1T a4)tr(T a2T a3)
}
, (B.9)

for the mixed nonplanar-planar (NP; P) part and

T1234−NP;NP = 4
{

tr(T a1T a2)tr(T a3T a4)+tr(T a1T a3)tr(T a2T a4)+tr(T a1T a4)tr(T a2T a3)
}

×
{

tr(T̃ a1 T̃ a2)tr(T̃ a3 T̃ a4)+tr(T̃ a1 T̃ a3)tr(T̃ a2 T̃ a4)+tr(T̃ a1 T̃ a4)tr(T̃ a2 T̃ a3)
}
,

(B.10)
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for the nonplanar-nonplanar (NP; NP) contribution of the color structure. In total we

have six inequivalent diagrams for the one-loop four-point amplitude with the following

orderings

S4/Z4 =
{
{1234}, {1243}, {1324}, {1342}, {1423}, {1432}

}
, (B.11)

which only the first ordering has been shown in (B.3). The full four-point amplitude

(irreducible contribution) is the sum of all the orderings in (B.11), which can be written

as (A′Irr[i, j, k, l] ≡ A′Irr[ki, kj , kk, kl])

A′Irr = A′Irr[1, 2, 3, 4] +A′Irr[1, 2, 4, 3] +A′Irr[1, 3, 2, 4]

+A′Irr[1, 3, 4, 3] +A′Irr[1, 4, 2, 3] +A′Irr[1, 4, 3, 2] . (B.12)

Note that the T1234−NP;NP is invariant under exchanging any two external scalars, which

indicates its appearance for all six orderings.

In the following we present the CHY results from (4.8) for this amplitude to compare

with the results from the Feynman rules in (B.12). m1−loop
4 in (4.8) has two parts, one

for the color decomposition and one for the momentum integral. If we exclude the planar

contribution (which has been discussed in [55]) in m1−loop
4 we have:

I(1−P;NP) = 4(N)

3∑
p=1

∑
π∈S4/Z4

∑
γ∈Sp/Zp

δ∈S4−p/Z4−p

Tr(T iπ1 · · ·T iπ4 )×m(1−P;NP)
4 [π ; γ|δ]

×Tr(T̃ iγ1 · · · T̃ iγp )×Tr(T̃
iδp+1 · · · T̃ iδ4 )

= 4Ntr(T a1T a2T a3T a4)×
{

Tr(T̃ a1 T̃ a2)×Tr(T̃ a3 T̃ a4)m
(1−P;NP)
4 [1,2,3,4; 1,2|3,4]

+Tr(T̃ a1 T̃ a3)×Tr(T̃ a2 T̃ a4)m
(1−P;NP)
4 [1,2,3,4; 1,3|2,4]

+Tr(T̃ a1 T̃ a4)×Tr(T̃ a2 T̃ a3)m
(1−P;NP)
4 [1,2,3,4; 1,4|2,3]

}
+five more permutations , (B.13)

which coincides with the color structure of (B.6) after replacing T′1234 with T′1234−P;NP

and considering other permutations in (B.12). Now the loop integral appearing in (5.6)

(after some momentum shifts) corresponds to what we have in (B.6). We also used the

fact that

M
(1−P;NP)
4 [1,2,3,4;1,2|3,4]≡M

(1−P;NP)
4 [1,2,3,4;1,3|2,4]≡M

(1−P;NP)
4 [1,2,3,4;1,4|2,3] .

(B.14)

The same discussion holds for the NP; P part.
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Now, the most nontrivial part is the NP; NP contribution. For this piece of the ampli-

tude from (4.8) we get

I(1−NP;NP) = 4

3∑
p=1
q=1

∑
π∈Sp/Zp,γ∈Sq/Zq

ρ∈S4−p/Z4−p,δ∈S4−q/Z4−q

Tr(T iπ1 · · ·T iπp )×Tr(T iρp+1 · · ·T iρ4 )×m(1−NP;NP)
4 [π|ρ;γ|δ]

×Tr(T̃ iγ1 · · · T̃ iγq )×Tr(T̃ iδq+1 · · · T̃ iδ4 )

= 4tr(T a1T a2)tr(T a3T a4)
{
m

(1−NP;NP)
4 [1,2|3,4;1,2|3,4]tr(T̃ a1 T̃ a2)tr(T̃ a3 T̃ a4)

+m
(1−NP;NP)
4 [1,2|3,4;13|24]tr(T̃ a1 T̃ a3)tr(T̃ a2 T̃ a4)

+m
(1−NP;NP)
4 [1,2|3,4;14|23]tr(T̃ a1 T̃ a4)tr(T̃ a2 T̃ a3)

}
+4tr(T a1T a3)tr(T a2T a4)

{
m

(1−NP;NP)
4 [1,3|2,4;1,2|3,4]tr(T̃ a1 T̃ a2)tr(T̃ a3 T̃ a4)

+m
(1−NP;NP)
4 [1,3|2,4;13|24]tr(T̃ a1 T̃ a3)tr(T̃ a2 T̃ a4)

+m
(1−NP;NP)
4 [1,3|2,4;14|23]tr(T̃ a1 T̃ a4)tr(T̃ a2 T̃ a3)

}
+4tr(T a1T a4)tr(T a2T a3)

{
m

(1−NP;NP)
4 [1,4|2,3;1,2|3,4]tr(T̃ a1 T̃ a2)tr(T̃ a3 T̃ a4)

+m
(1−NP;NP)
4 [1,4|2,3;13|24]tr(T̃ a1 T̃ a3)tr(T̃ a2 T̃ a4)

+m
(1−NP;NP)
4 [1,4|2,3;14|23]tr(T̃ a1 T̃ a4)tr(T̃ a2 T̃ a3)

}
. (B.15)

We have already calculated the momentum integrals appearing here in (5.8), it contains

all the six inequivalent momentum integrals we have for the four-point amplitude, which

means all m
(1−NP;NP)
4 [· · · ] in (B.15) are equivalent. After factorizing the momentum inte-

gral, (B.15) is exactly what we have for the NP; NP contribution from the standard compu-

tation in T1234−NP;NP after considering all permutations and momentum integrals in (B.12).

To summarize, in this appendix we have shown the exact equivalence for the non-planar

contribution to the four-point amplitude between our formula in the CHY side (4.8) and

the one from the standard method based on the Feynman rules for the bi-adjoint scalar field

theory in (B.12). The same discussion applies to higher order amplitudes at one-loop level.
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