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In the limit of an approximate μ − τ symmetry in the neutrino mass matrix, we explore deviations 
to the Tri-Bi-Maximal mixing pattern in the neutrino sector. We consider two different ansatzes for the 
corrected pattern to predict the current values of neutrino mixing parameters. We show that it is possible 
to constrain the Majorana C P phases by studying their correlation to the mixing parameters and we 
study their effects on neutrinoless double beta decay observables. These predictions are sharp for the 
quasi-degenerate ordering and can be tested in upcoming experiments.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Neutrino mixing angles have been determined with unprece-
dented precision in recent years [1–3]. These angles define the 
structure of the lepton mixing matrix known as the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix [4,5], which can be written 
in the standard form

UPMNS =
(

c12c13 s12c13 s13e−iδC P

−s12c23 + c12s23s13eiδC P c12c23 + s12s23s13eiδC P −s23c13

−s12s23 − c12c23s13eiδC P c12s23 − c23s12s13eiδC P c23c13

)

×diag
[

1, e−i
β1
2 , e−i

β2
2

]
. (1)

Here, ci j and si j stand for cos θi j and sin θi j , respectively, and θi j

denotes the mixing angles θ12, θ13, and θ23. δC P is the Dirac-C P vi-
olating phase, whereas β1 and β2 are two additional phases which 
account for the Majorana nature of neutrinos. Despite the success 
in determining the mixing angles [1–3], a precise determination of 
the C P violating phases is still missing. The next-to-next genera-
tion of neutrino experiments could finally help to determine the 
Dirac C P violating phase (C P V P ) [6]. However, given the lack of 
experimental observables directly related to the Majorana phases, 
the needed of indirect, but complementary determinations of their 
values becomes an interesting task to be explored.
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Oscillation experiments confirm that the reactor θ13 angle is 
small but not zero, whereas the atmospheric θ23 angle is close to 
its maximal value, π/4. A direct consequence of choosing these 
critical values (θ13 = 0 and θ23 = π/4) is that the mixing matrix in 
Eq. (1), without including Majorana phases, takes the form

Uμ−τ =

⎛
⎜⎜⎝

c12 s12 0
−s12√

2
c12√

2
−1√

2
−s12√

2
c12√

2
1√
2

⎞
⎟⎟⎠ , (2)

with the mixing angle θ12 as the only free parameter. The subindex 
μ − τ in Eq. (2) refers to the so-called μ − τ symmetry [7–28]
since it satisfies the relations |Uμi | = |Uτ i |. Among the symme-
try approaches based on the μ − τ symmetry, it has been of 
great interest the Tri-Bi-Maximal (TBM) mixing pattern [29] where 
sin2 θ12 = 1/3. The TBM pattern has been the starting point of 
many theoretical works since it can be generated from larger fla-
vor symmetries (see for instance [30,31] and references therein). 
Nonetheless, the predicted mixing angles within this symmetric 
approach are in conflict with current experimental determinations.

Deviations to the TBM scenario have been investigated in or-
der to restore the compatibility with latest neutrino data [32–38]. 
Some parametrizations written in the form

UPMNS = U T BM UCorr (3)

have been considered, where UCorr is a correction matrix which 
encodes the deviation from the TBM mixing matrix U T BM . This 
correction is usually written in terms of up to two rotation angles 
in the orthogonal case [33,34], and including one complex phase 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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in the unitary case [35–37]. These approaches have been able to 
reproduce the pattern of mixing parameters in the limit of small 
rotation angles and, in some cases, have provided some predictions 
for the Dirac C P phase. However, this type of ansatz could not give 
any hint about the Majorana phases. One possibility of exploring 
the Majorana case is to include additional phases into the TBM 
corrected matrix as in [32,39,40].

On the other hand, the possibility of still having an approximate 
μ − τ symmetry in the neutrino mass matrix has been explored in 
[41,42], where the viability of such scenario has been confronted 
with neutrino data. In particular, the connection between an ap-
proximate μ − τ symmetry in the neutrino mass matrix and both 
Dirac and Majorana phases have been also explored without con-
sidering a particular ansatz of the mixing matrix [43].

In this paper, we investigate different ansatzes which correct 
the TBM mixing and study their effect on the neutrino mass ma-
trix, which, to the best of our knowledge, has not been explored. 
The novelty of our approach is that, by defining an approximate 
μ −τ symmetry in the mass matrix, the Majorana phases could be 
bounded and affect neutrino observables as the neutrinoless dou-
ble beta decay amplitude (|mee|). The remainder of this work is or-
ganized as follows. First, we present the different scenarios which 
correct the TBM pattern. Then, we describe the μ − τ symmetric 
limit of the neutrino mass matrix and its connection with the cor-
rection parameters. Third, we show the main results of our analysis 
and the phenomenological implications over the C P parameters 
and |mee|. Finally, we give our final comments and conclusions.

2. Deviations to TBM pattern

For the sake of simplicity, we will consider in our forthcoming 
analysis only deviations to the TBM pattern coming from the neu-
trino sector, such that the corrected mixing matrix takes the form 
of Eq. (3). Let us now consider the following ansatz for the correc-
tion matrix

UCorr = Uij(φ,σ ) Diag
(

1,e−i α1
2 ,e−i

α2
2

)
, (4)

where Uij is a unitary matrix which depends on the rotation an-
gle φ, and the complex phase σ . Here i, j = 1, 2, 3, and i �= j. 
The last term in Eq. (4) is a diagonal matrix with two complex 
phases, α1 and α2. This approach incorporates in a similar fash-
ion to the standard parametrization in Eq. (1) two new complex 
phases, which are expected to be related to the physical Majorana 
C P phases. These type of parametrizations, which can be gener-
ated in a model dependent way from specific flavor symmetries, 
has been discussed elsewhere [32].

Among the three possibilities in writing Uij , it is direct to see 
from Eqs. (3) and (4) that only the rotations

U13 =
⎛
⎝ cosφ 0 sinφ e−iσ

0 1 0
− sinφ eiσ 0 cosφ

⎞
⎠ , (5)

and

U23 =
⎛
⎝ 1 0 0

0 cosφ sinφ e−iσ

0 − sinφ eiσ cosφ

⎞
⎠ , (6)

lead to a mixing matrix able to accommodate θ13 �= 0, as we will 
show later. We should notice that for recovering the TBM matrix it 
is enough to consider the limit where φ = α1 = α2 = 0. Clearly, in 
this case, UCorr corresponds to the identity matrix as it is expected. 
In contrast, however, a U12 rotation directly leads to a complex 
μ − τ symmetric matrix predicting θ13 = 0 and θ23 = π/4, with 
an unphysical Dirac phase. For these reasons, we will not consider 
the rotation 1 − 2 in our following discussion.1

We can see from the standard parametrization of the PMNS ma-
trix in Eq. (1) that the mixing angles can be defined in terms of the 
elements of the neutrino mixing matrix [1]:

sin2 θ12 = | Ue2 |2
1− | Ue3 |2 , sin2 θ23 = | Uμ3 |2

1− | Ue3 |2 ,

sin2 θ13 =| Ue3 |2,
(7)

while the C P violation parameters can be obtained from

JC P = Im
[

Ue1Uμ2U∗
e2U∗

μ1

]
(8)

= (1 − s2θ13)
√

s2θ13s2θ12s2θ23(1− s2θ12)(1− s2θ23) sin δC P .

By comparing Eq. (1) with the corrected μ − τ matrix of Eq. (3), 
we obtain that the Majorana C P phases are related to the new 
phases via

β1 = α1, β2 = α2 + 2(σ − δC P ) . (9)

As we can see, the relations in Eqs. (7-9) hold independently of 
the rotation adopted in Uij , but may differ when they are written 
in terms of the correction parameters involved in Eq. (4).

As a first case, let us consider the 1 − 3 rotation (Case I) given 
in Eq. (5). From Eq. (7), the experimental mixing angles are then 
linked to the correction parameters in Eq. (3) by means of [35,36]

sin2 θ12 = 1

3 − 2 sin2 φ
,

sin2 θ23 = 1

2

(
1 +

√
3 sin 2φ cosσ

3 − 2 sin2 φ

)
, (10)

sin2 θ13 = 2

3
sin2 φ.

The Jarlskog invariant and the Dirac C P can be obtained from

JC P = − 1

6
√

3
sin 2φ sinσ ,

sin δC P = − (2 + cos 2φ) sinσ[
(2 + cos 2φ)2 − 3 sin2 2φ cos2 σ

]1/2
,

(11)

and the Majorana phases from Eq. (9).
On the other hand, in the second case we take the 2 −3 rotation 

(Case II) of Eq. (6). In this case, the mixing parameters are given 
by [35,36]

sin2 θ12 = 1 − 2

3 − sin2 φ
,

sin2 θ23 = 1

2

(
1 −

√
6 sin 2φ cosσ

3 − sin2 φ

)
, (12)

sin2 θ13 = 1

3
sin2 φ,

while

1 In fact, a rotation of the 1 − 2 neutrino sector may come from higher order 
perturbative corrections, which introduces a correction to the zeroth order TBM pre-
diction sin2 θ12 = 1/3. In such a case, the predicted mixing matrix still preserves a 
μ − τ symmetric structure.
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JC P = − 1

6
√

6
sin 2φ sinσ ,

sin δC P = − (5 + cos 2φ) sinσ[
(5 + cos 2φ)2 − 24 sin2 2φ cos2 σ

]1/2
.

(13)

As in the previous case, the Majorana phases can be obtained from 
Eq. (9).

A direct inspection of Eqs. (10) and (12) shows that current 
determinations of the θ13 mixing angle forbid null values of the φ
angle, but are in favor of small values of this parameter. Moreover, 
this parameter allows determining the size of the departure from 
the maximal value of the atmospheric via the reactor angle, where 
we obtain the approximate sum rules

| sin2 θ23 − 1

2
| ≈ √

2 cosσ sin θ13 (Case I),

| sin2 θ23 − 1

2
| ≈ cosσ sin θ13 (Case II). (14)

Thus, this shows that deviations of θ23 from the maximal mixing 
are correlated to deviations in θ13 from zero through the phase σ , 
which also correlates these mixings with the C P phases, δC P and 
β2, as we can see from Eqs. (9), (11) and (13). From the theoretical 
point of view, this could be of great interest since it point towards 
the possibility of explaining the observed mixings with a common 
physical origin in favor of a well-defined flavor symmetry [43,44].

3. μ − τ symmetryc limit in the mass matrix

From our previous discussion, we can see that it is manda-
tory to adopt departures from the TBM mixing pattern in order 
to explain the observed mixings. Nevertheless, it is still missing a 
description of the effects of such deviations in the neutrino mass 
matrix. Before doing this, let us first discuss the μ − τ symmetry 
in the mass matrix.

In the basis where the charged lepton are diagonal, the neu-
trino mass matrix is obtained from Mν = Uνdiag(m1, m2, m3)U T

ν , 
where Uν ≡ UPMNS. In the μ − τ symmetric limit we can write 
Uν = Uμ−τ (as in Eq. (2)). In this case, the resulting mass ma-
trix reflects an exchange symmetry between the μ and τ entries, 
|meμ| = |meτ | and mμμ = mττ . It is straightforward to show that 
the corrections adopted in the mixing matrix will change in con-
sequence this symmetric structure of the neutrino mass matrix.

Following the approach in [41,44], the breaking of the μ − τ

symmetry in the neutrino mass matrix can be accommodated in 
two parameters which encode the strength of such breaking. In 
this way, the mass matrix takes the form

Mν = Mμ−τ + δM
(
δ̂, ε̂

)
. (15)

Here, the matrix Mμ−τ does possess the characteristics of a μ − τ

symmetric matrix, whereas δM is defined by only two nonzero 
breaking parameters, δ̂ and ε̂ . In terms of the matrix elements, 
these parameters are given by

δ̂ =
∑

i(Uei Uτ i − Uei Uμi)mi∑
i Uei Uμimi

,

ε̂ =
∑

i(Uτ i Uτ i − Uμi Uμi)mi∑
i Uμi Uμimi

. (16)

It is worth noting that an approximate μ − τ symmetric mass ma-
trix [41] is obtained when |δ̂|, |ε̂| � 1.

It is direct to show that the breaking parameters in Eq. (16)
can be written in terms of the correction parameters (φ, σ , α1, 
and α2) by using Eqs. (3) and (4). The complete expressions of 
the breaking parameters depend on the parametrization adopted 
in the mixing matrix and are rather large. Also, they depend on 
the mass ordering selected and will not be displayed here. The 
absolute masses |m1,2,3| can be expressed in terms of the lightest 
neutrino mass m0 as

|m2| =
√

m2
0 + �m2

21 , |m3| =
√

m2
0 + |�m2

31| for NH,

|m1| =
√

m2
0 + |�m2

31| , (17)

|m2| =
√

m2
0 + |�m2

31| + �m2
21 for IH.

Here, the square mass difference �m2
21 = m2

2 − m2
1 is also known 

as the solar mass scale, and �m2
31 = m2

3 − m2
1 as the atmospheric 

mass scale, where m0 becomes |m1| for the normal mass hierar-
chy (NH), and m3 for the inverted mass hierarchy (IH). Thus, the 
expressions in Eq. (16) give us a direct relation between the correc-
tion parameters of the mixing matrix and the breaking parameters 
of the mass matrix. In addition, small departures from the μ − τ
symmetric limit in the mass matrix restrict the parameter space of 
|δ̂| and |ε̂| to small values. As a consequence, it could be possible 
to restrict even more the values of the correction parameters and 
hence the predicted neutrino mixings.

4. Results

For the numerical analysis, we use the results of the latest 
global fit for the various neutrino oscillation experiments [3]. For 
the sake of simplicity, we will work hereafter in the inverted hier-
archy (IH), however, as we will show later, our results are valid for 
both approaches. The 3σ intervals of the mixing angles are

0.273 < sin2 θ12 < 0.379, 0.0199 < sin2 θ13 < 0.0244,

0.453 < sin2 θ23 < 0.598
(18)

and the squared mass differences �m2
21 = 7.55+0.20

−0.16 × 10−5 eV2

and |�m2
31| = 2.42+0.03

−0.04 × 10−3 eV2. Let us divide our discussion 
into the two cases of interest. First, we analyse the 1 − 3 rotation, 
then, the 2 − 3 rotation case.

4.1. Case I: 1-3 rotation

Based on Eqs. (9), (10), and (11), we will analyse the impact 
of the correction parameters (φ, σ and α1,2) over the mixing pa-
rameters when an approximate μ − τ mass matrix is required by 
imposing |δ̂|, |ε̂| < 0.25. We will also analyse the case when this 
condition is omitted. In any case, we will select those values of 
the correction parameters which predicts mixing angles within the 
allowed 3σ region of the experimental values and show several 
relations among the predicted mixings. φ will be scattered in the 
(0, π/2) interval, and the phases σ , α1, and α2 within the (−π, π ) 
range.

Some particular cases can be analyzed by selecting specific val-
ues of α1 and α2. Let us first discuss the case α2 = 0. From 
Eq. (9), this limit implies that β1 = α1 and β2 = 2(σ − δC P ). In 
Figs. 1 and 2, we can observe that the correlations between the θ23
mixing angle and the C P parameters are narrow when both con-
ditions, small symmetry breaking and α2 = 0, are imposed (blue 
region). In this case, the deviation of θ23 from its maximal value 
(θ23 = π/4) is rather large, i.e. the predicted value lies in a very 
narrow range near the 3σ current limit. A most precise experi-
mental determination of such observable could, in principle, rule 
out this scenario in the near future. The allowed 3σ region of 
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Fig. 1. Correlation between δC P and sin2 θ23 in Case I. The blue region is obtained 
for α2 = 0, in the limit of an approximate μ − τ symmetry. The gray region is 
obtained when the small breaking requirement is omitted and does not depend 
on the chosen values of α1 and α2. Vertical (red) line shows the best fit value of 
sin2 θ23. The horizontal band shows the allowed 3σ range of δC P and its central 
value (horizontal red line) as indicated by the global fits [3].

δC P [3] is also shown in Fig. 1, which shows that this scenario 
is also disfavored by the last indications of maximal C P violation 
(δ = −π/2) [1–3]. However, as we can see from Figs. 1 and 2, there 
is a strong correlation between β2 and δC P with the atmospheric 
angle even when the small breaking condition is omitted (gray re-
gion), as expected from Eq. (9). Thus, in this approach it could be 
possible to extract some indirect information about C P violating 
phases through a precise determination of the atmospheric angle. 
Moreover, we can identify that the restricted blue region of δC P in 
Fig. 1 is due only to the small symmetry breaking conditions since 
δC P is independent of the correction phases α1,2, as we can verify 
from Eq. (11).

In the limit of an approximate μ − τ symmetry, the C P pa-
rameters in Figs. 1 and 2 are constrained to very narrow regions 
for the case α2 = 0. Such a behaviour can be explained by con-
sidering some limit cases. In the limit of degenerate hierarchy 
(DH), |m1| ≈ |m2| ≈ m3, the breaking parameters take a rather sim-
ple form in terms of correction parameters. This approximation is 
justified by the analysis presented at the end of this section. By 
neglecting, in addition, quadratic terms of sin φ, we obtain |δ̂| ∼
2
√

6 sinσ sin 2φ(1 − cosα1)
−1/2, with a similar expression for |ε̂|. 

We can observe that the small breaking condition |δ̂|, |ε̂| < 0.25
forbids null values of α1, which is consistent with the region of β1
in Fig. 2. Furthermore, small values of |δ̂| and |ε̂| are obtained for 
small values of σ . From Eq. 11, we can observe that in this limit 
the behaviour of δC P is dominated by σ , which, due to the latter 
condition, restricts δC P to a narrow region as is shown in Fig. 1. 
Fig. 3. Allowed region of β2 Majorana phase in Case I for α1,2 �= 0. Blue (gray) region 
is obtained when the small μ − τ symmetry breaking in the mass matrix is consid-
ered (omitted). Correlation between β2 and sin2 θ23 is shown for the 3σ range.

Finally, from the approximate expressions of the breaking parame-
ters, it is direct to show that for large departures of the symmetric 
limit, the C P parameters are less restricted.

Now, we consider the case α1 = 0. From Eq. (9), it is straightfor-
ward to show that this case directly implies that β1 = 0, and that 
β2 is unbounded since α2 remains as a free parameter. Without 
considering small symmetry breaking requirements, this case does 
not give useful information about Majorana phases. Moreover, this 
case is totally ruled out when the requirement of a small symme-
try breaking is imposed.

In the trivial case α1 = α2 = 0, we also obtain β1 = 0, while 
the correlation of δC P (β2) with θ23 is given again by the gray re-
gion in Fig. 1 (2) when the symmetric limit is not included. Again, 
this case is completely disfavored when the requirement of a small 
symmetry breaking is added.

Finally, when we leave α1,2 as free parameters it is direct to 
show that β1 remains free. The predicted region of δC P in this sce-
nario is the same for both cases, when we include or omit the 
approximate symmetry condition, and coincides with the gray re-
gion in Fig. 1. The correlation between β2 and sin2 θ23 is shown 
in Fig. 3. Here, we can observe that the parameter space of β2 is 
reduced when the small braking conditions are imposed (blue re-
gion). It is worth stressing that this scenario is the most favored by 
the experimental data when the small breaking requirements are 
included.

Concerning to our Case I, we should stress that we have iden-
tified two possible scenarios predicting nice correlations between 
C P violating parameters and the atmospheric mixing angle: the 
case α2 = 0, and the general case where α1 and α2 remain free. 
Through these correlations, it would be possible to extract valuable 
Fig. 2. Allowed region of Majorana phases in Case I for α2 = 0. Blue (gray) region is obtained when the small μ − τ symmetry breaking in the mass matrix is considered 
(omitted). Correlations between β1 (β2) and sin2 θ23 is shown in the left (right) plot for the 3σ range.
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Fig. 4. |mee | predicted regions in Case I. Left (right) plot corresponds to α2 = 0 (α1,2 �= 0). Scattered blue points (gray boxes) denote the allowed region when the approximate 
μ − τ symmetry is (not) impossed. Yellow region is obtained for free Majorana phases. The horizontal line shows the upper bound on |mee| from EXO-200 [45,46] in 
combination with KamLAND-ZEN [47]. The vertical line shows the upper limit on the mass of the lightest neutrino derive from Planck results [48].
information about C P violation in the lepton sector in the advent 
of precise determinations of the mixing angles in forthcoming neu-
trino experiments.

Now, let us discuss some phenomenological implications of the 
different scenarios over the effective mass |mee | describing neutri-
noless double beta decay. In Fig. 4, we show the predicted regions 
of |mee| in the case of a 1-3 rotation for the inverted hierarchy. We 
plot separately the cases where α1,2 �= 0 (right) and α2 = 0 (left). 
In each case, we can observe how the region is reduced when the 
approximate symmetry requirement is included. As we have previ-
ously discussed, these are the only cases where at least one of the 
Majorana phases can be bounded. For comparison, we also plot the 
allowed region of the mass element |mee | in the general case when 
both of the Majorana phases are free (yellow region).

For α2 = 0 (left plot of Fig. 4), and without including restric-
tions on the breaking parameters (gray boxes), the predicted region 
of |mee| is slightly narrow compared to the case of totally free Ma-
jorana phases (yellow band). Owing to the correlation between β2
and the atmospheric angle, this region could be narrowed even 
more with a more precise determination of θ23, as can be seen 
from Fig. 2. The implementation of small breakings in the mass 
matrix restricts the values of the lightest neutrino mass to lie 
above the 0.03 MeV, showing a marked preference for the quasi-
degenerate hierarchy as was noted in [41,43,44]. This scenario is 
disfavored given its preference for maximal deviations in the at-
mospheric angle.

On the other hand, in the general case α1, α2 �= 0, and when 
the small breaking condition is adopted (blue points), a strong 
preference for the quasi-degenerate hierarchy is also obtained 
(right plot of Fig. 4). Hence, such a scenario could be tested with 
improved limits of cosmology and/or neutrinoless double beta de-
cay experiments. When the symmetry breaking condition is re-
moved, the predicted region (gray boxes) is extended over the full 
range of m0, as it is expected since both of the Majorana phases 
remains unbounded in this case.

4.2. Case II: 2-3 rotation

Let us now move our attention to the case of a 2-3 rotation 
matrix. The selection criteria are similar to the one used in the 
previous case by allowing the predicted mixing angles to lie within 
the 3σ experimental range. In Fig. 5 we show the predicted re-
gions of δC P versus sin2 θ23 when we include (blue region) and 
omit (gray region) the requirements for small symmetry breaking. 
It should be noticed that blue and gray regions are overlapped, 
which means that the breaking parameters do not affect the pa-
rameters φ and σ involved in predicting δC P (see Eq. 13).
Fig. 5. Same description as in Fig. 1 but for Case II.

In Fig. 6, we can see that the α2 = 0 scenario predicts well-
defined regions of both Majorana C P phases when the condition 
of an approximate symmetry is included (blue region). The omis-
sion of this last condition leaves β1 undetermined (gray region in 
the left plot) while β2 remains unchanged (right plot), as it is ex-
pected due to the fact that β2 does only depend on φ and σ in 
this scenario.

Opposite to the Case I, the μ − τ symmetric limit does not 
restrict the C P parameters in Figs. 5 and 6 to narrowed regions, 
but allow a good correlation between these parameters and the 
atmospheric angle over a wide range of values of θ23. Such a 
restriction is more evident for β1 in Fig. 6. By considering the 
same limits of the Case I, we obtain the approximate relation 
|δ̂| ∼ √

6 sin 2φ[1 − cos(α1 − 2σ)]1/2(1 − cosα1)
−1/2, with a sim-

ilar expression for |ε̂|. We can observe that the small breaking 
condition |δ̂|, |ε̂| < 0.25, in this case, also forbids null values of 
α1, which is consistent with the region of β1 in Fig. 6. In addi-
tion, small values of |δ̂| and |ε̂| could be obtained, for example, for 
α1 − 2σ ∼ 0, which can be satisfied by a wide set of values of α1
and σ , and hence of β1 and δC P . This behaviour can be observed 
in Figs. 5 and 6, where β1 ∼ 2δC P over the full range of θ23.

Other combinations of the phases α1 and α2 leave Majorana 
phases undetermined, or fixed to zero, which give no relevant in-
formation even if we ask for small symmetry breakings in the 
neutrino mass matrix.

The predicted region of |mee| is shown in Fig. 7, which corre-
sponds to the case α2 = 0. The scattered gray boxes (blue points) 
show the predicted values of |mee| when the small symmetry 
breaking condition is omitted (included). As we have discussed, 
the case α2 = 0 with the small breaking requirement is the only 
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Fig. 6. Same description as in Fig. 2 but for Case II.
Fig. 7. Same description as in Fig. 4 but for Case II.

one where both Majorana phases can be bounded. This is reflected 
in a narrow region of |mee| (blue points in Fig. 7), which is disfa-
vored by the current cosmological limit of m0.

5. Summary

It is well known that the TBM mixing pattern predicts a max-
imal value for the atmospheric angle (θ23 = π/4) and a null θ13. 
The latter value is disfavored by recent experimental data while 
the former is still allowed. Despite the confirmation of a sizable 
reactor angle, the TBM pattern remains as a simple alternative to 
explain neutrino mixings if some modifications are adopted.

In this study, we have parametrized the neutrino mixing matrix 
by considering deviations from the TBM pattern through a correc-
tion matrix in the neutrino sector, which we wrote in terms of 
four correction parameters. Given its comparison with the standard 
parametrization, we obtained analytic expressions for the mixing 
angles, the Dirac δC P , and the Majorana phases, in terms of these 
parameters. We have analyzed, in addition, two breaking param-
eters which helped to define an approximate μ − τ symmetry in 
the mass matrix. These breaking parameters could also be writ-
ten in terms of the correction parameters and played an important 
role in bounding the correction phases. In total, we have consid-
ered five restrictions (three from the experimental values of the 
mixing angles, and two from the symmetric limit in the mass ma-
trix) in order to bound the correction parameters, and hence to 
predict the allowed regions for Majorana and Dirac C P phases in 
this context.

Concerning our scheme, the predicted C P phases could be re-
lated to the atmospheric angle in different scenarios. We have also 
analyzed the phenomenological implications of the predicted Ma-
jorana phases over the effective mass |mee | describing neutrinoless 
double beta decay. In this line of thought, our results showed a 
marked preference for the quasi-degenerate hierarchy when the 
approximate μ − τ symmetry requirement was included. Future 
improvements in the determination of the mixing angles and the 
Dirac C P phase, joint to the effective mass |mee |, will play a fun-
damental role in testing such scenarios.
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