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1 Introduction

The S-matrix elements of gravity, gauge theories and various scalar theories can be calcu-

lated using the novel scattering equation framework by Cachazo, He and Yuan (CHY) [1–3].

The n-point scattering amplitude in the CHY-formalism is expressed as contour integrals

localized to the solutions of the scattering equations

Sa = 0, where Sa =
∑
b 6=a

sab
zab

, (1.1)

with zab = za − zb and za are auxiliary variables on the Riemann sphere. Unless otherwise

specified, we let a, b ∈ {1, . . . , n}. The momentum of the ath external particle is kµa and

sab = 2ka · kb are the usual Mandelstam variables. The scattering equations are invariant

under PSL(2,C) transformations of the variables,

za → z′a =
Aza +B

Cza +D
, where AD −BC = 1, (1.2)

using overall momentum conservation,
∑
ka = 0, and the massless condition, k2

a = 0. This

means that if za is a solution to eq. (1.1), then so is z′a. Thus, only (n−3) of the scattering

equations are independent, which can be seen from the fact that∑
a

Sa =
∑
a

zaSa =
∑
a

z2
aSa = 0. (1.3)

There is a redundancy in the integration variables which needs to be fixed, similar to

how gauge redundancy is fixed. We choose three of the integration variables to be fixed,

leaving (n−3) unfixed variables, which are integrated over. Thus, the number of integration

variables and the number of constraints from the scattering equations are equal, which fully

localizes the integral to the solutions of the scattering equations. However, the number of

independent solutions to the scattering equations is (n − 3)!, and it becomes impractical

to deal with them when n is not small. The computational cost becomes huge when the

number of external particles increases. Integration rules have been developed to circumvent

this problem, both at tree [4–9] and loop level [10], where no scattering equation has to be

explicitly solved. A formal proof of the CHY-formalism was provided in ref. [11]. See also

ref. [12].

Recently, one of us extended the scattering equation formalism to a double cover of

the Riemann sphere (called the Λ-algorithm in refs. [13–16]). The auxiliary double-cover

variables live in CP2, contrasted with the original auxiliary variables za, which live in CP1

in the standard CHY formulation. More precisely, we consider curves in CP2 defined by

Ca ≡ y2
a − σ2

a + Λ2 = 0, (1.4)

where Λ is a non-zero constant. This curve is invariant under a simultaneous scaling of the

parameters y, σ,Λ. In the new double-cover formulation, the punctures on the Riemann

sphere are given by the pair (σa, ya). As eq. (1.4) is a quadratic equation, two branches
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develop. The value of ya specifies which branch the solution is on. To make sure we pick

up the puncture on the correct branch, the scattering equations have to be modified

S̃τa (σ, y) =
∑
b 6=a

1

2

(
yb
ya

+ 1

)
sab
σab

, (1.5)

where σab = σa − σb. The factor 1
2

(
yb
ya

+ 1
)

projects out the solution where yb approaches

−ya, and gives 1 when yb approaches ya. Another (equivalent) way of defining the double

cover scattering equations is to postulate the map

Sa(z) =
∑
a 6=b

sab
zab
→ Sτa (σ, y) =

∑
a 6=b

sabτ(a,b), where τ(a,b) =
1

2σab

(
ya + yb + σab

ya

)
.

(1.6)

It is easy to check that the two prescriptions for the double cover scattering equations

are equivalent by using overall momentum conservation and the on-shell condition. The

map zij → τ−1
(i,j) will be useful later when we define the double cover integrand. For a full

formulation of the double-cover prescription, see ref. [13].

In the double cover prescription, three variables need to be fixed due to Möbius in-

variance. In addition, the integrand is invariant under a scale transformation. This gives

an additional redundancy which needs to be fixed (as the integrand is PSL(2,C) and scale

invariant, i.e. GL(2,C) invariant). Using the scale symmetry, we fix an extra puncture, and

promote Λ to a variable and include a scale invariant measure dΛ
Λ . Using the global residue

theorem, we can deform the integration contour to go around Λ = 0 instead of the solution

to the scattering equation for the puncture fixed by the scale symmetry. This scattering

equation is left free. Thus, in the double-cover prescription we gauge fix four points, three

from the usual gauge fixing procedure, and one from the scale transformation.

The two sheets of the Riemann sphere are separated by a branch cut, and by integrating

over Λ, lead to the factorization into two regular lower-point CHY amplitudes. This is the

origin of the new factorization relations which we will discuss in the main part of this paper.

By iteratively promoting the scattering amplitudes to the double-cover formulation, and

using certain matrix identities, any n-point scattering amplitude for the non-linear sigma

model can be fully factorized into off-shell three-point amplitudes.

This paper is organized as follows. In section 2 we formulate the non-linear sigma

model amplitudes in the usual CHY formalism. In section 3 we introduce the double-cover

prescription for effective field theories. In section 4 we describe the graphical representa-

tions for the scattering amplitudes in the double-cover formalism. In section 5 we list the

double-cover integration rules. In section 6 we define the three-point functions which will

serve as the building blocks for higher-point amplitudes. In sections 7 and 8 we present

the new factorization formulas for the non-linear sigma model. In section 9 we present a

novel recursion relation, which fully factorizes the non-linear sigma model amplitudes in

terms of off-shell three-point amplitudes. This is one of the main results of the paper. Sec-

tion 10 takes the soft limit of the non-linear sigma model amplitudes, and presents a new

relation for NLSM ⊕ φ3 amplitudes. In section 11 we apply the double-cover prescription
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to the special Galileon theory. We end with conclusions and outlook in section 12. The

appendices A and B contain matrix identities and details of the six-point calculation.

2 CHY formalism

We briefly review the construction of non-linear sigma model (NLSM) scattering amplitudes

in the CHY formalism to fix notation. The flavor-ordered partial U(N) amplitude for the

non-linear sigma model in the scattering equation framework is defined by the integral

An(α) =

∫
dµCHY

n (zpqzqrzrp)
2Hn(α), (2.1)

dµCHY
n =

n∏
a=1,a 6=p,q,r

dza
Sa

, (2.2)

where a partial ordering is denoted by (α) = (α1, . . . , αn). We have fixed the punctures

{zp, zq, zr}. The integrand is given by the Parke-Taylor factor PT(α) and the reduced

Pfaffian of the matrix An, Pf ′An,

Hn(α) = PT(α)
(
Pf ′An

)2
, (2.3)

PT(α) =
1

zα1α2zα2α3 . . . zαnα1

, (2.4)

(
Pf ′An

)2
=

(−1)i+j+l+m

zijzlm
Pf
[
(An)ijij

]
× Pf

[
(An)lmlm

]
. (2.5)

The matrix An is n× n and antisymmetric,

(An)ab =

{
sab
zab

for a 6= b

0 for a = b.
(2.6)

We will in general denote a reduced matrix by (An)
i1...ip
j1...jp

, where we have removed rows

{i1, . . . , ip} and columns {j1, . . . , jp} from the matrix An. As an example, we can remove

rows {i, j} and columns {j, k} from An in eq. (2.6), denoted by (An)ijjk.

With the conventional choice {l,m} = {i, j}, the product of Pfaffians turns into a

determinant (
Pf ′An

)2
= −PT(i, j) det

[
(An)ijij

]
. (2.7)

We will denote the amplitude with this choice by

An(α) = −
∫

dµCHY
n (zpqzqrzrp)

2 PT(α) PT(i, j) det
[
(An)ijij

]
. (2.8)

We can make a different choice, specifically {l,m} = {j, k}. We will make use of the matrix

identities

Pf
[
(An)ijij

]
× Pf

[
(An)jkjk

]
= det

[
(An)ijjk

]
, (2.9)

det
[
(An)ijjk

]
= 0 if n is odd. (2.10)
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Equation (2.10) depends on momentum conservation and the massless condition. A proof

of the matrix identities in eqs. (2.9) and (2.10) is found in appendix A. The amplitude with

this new choice is denoted by

A′n(α) =

∫
dµCHY

n (zpqzqrzrp)
2 PT(α)

(−1)i+k

zijzjk
det
[
(An)ijjk

]
. (2.11)

This definition differs from the conventional one, and will be of great practical use in the

following [17]. It will often be useful to remove columns and rows from the set of fixed

punctures. For the objects in eqs. (2.8) and (2.11), we will encode the information of

which rows and columns are removed in the labeling of the partial ordering α. When

removing columns and rows (i, j), we bold the corresponding elements in the partial or-

dering, i.e. An(. . . , i, . . . , j, . . . ). For the new prescription, the choice (ijk) is labeled by

A′n(. . . , i, . . . , j, . . . ,k, . . . ), where the set is chosen to be ordered as i < j < k. Unless oth-

erwise specified, we assume the set of removed rows and columns are in the two or three first

positions, i.e. An = An(i, j, . . . ) and A′n = A′n(i, j,k, . . . ). In this case, we will suppress the

bold notation. For an odd number of external particles n, det
[
(An)ijij

]
= det

[
(An)ijjk

]
= 0,

and the amplitudes vanish.

When evaluating the double cover amplitudes, it will be necessary to relax the require-

ment of masslessness, as the full amplitude is splits into off-shell lower-point amplitudes.

The off-shell punctures are part of the set of fixed punctures. We will also use the object

A(ij)
n (α) =

∫
dµCHY

n (zpqzqrzrp)
2 PT(α)

(−1)i+j

zij
det
[
(An)ij

]
. (2.12)

As the matrix An has co-rank 2 on the support of the massless condition and the scattering

equations, {k2
a = 0, Sa = 0}, A(ij)

n (α) vanishes trivially. However, when some of the

particles are off-shell, A
(ij)
n (α) is non-zero in general. Similarly, the object A′n(α) is non-

zero for odd number of particles, if and only if some of the particles are off-shell.

3 Effective field theories in the double-cover prescription

In ref. [17], it was argued that the n-point NLSM scattering amplitude in the double-cover

language is given by the integral

ANLSM
n (α) =

∫
Γ

dµΛ
n

(−1)∆(pqr)∆(pqr|m)

Sτm
INLSM
n (α), (3.1)

dµΛ
n =

1

22

dΛ

Λ

n∏
a=1

yadya
Ca

n∏
d=1,d 6=p,q,r,m

dσd
Sτd

, (3.2)

∆(pqr) =
1

τ(p,q)τ(q,r)τ(r,p)
, (3.3)

∆(pqr|m) = σp∆(qrm)− σq∆(rmp) + σr∆(mpq)− σm∆(pqr). (3.4)

In this section we will include a superscript to denote the amplitudes. In the rest of the

paper we keep this superscript implicit. When not otherwise specified, an amplitude with-

out a superscript refers to an NLSM amplitude. The integration contour Γ is constrained
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by the (2n− 3) equations

Λ = 0, Sτd (σ, y) = 0, Ca = 0, (3.5)

for d 6= {p, q, r,m} and a = 1, . . . , n.

In a similar fashion, one can obtain the expressions for the NLSM ⊕ φ3 and special

Galileon amplitudes, i.e. for ANLSM⊕φ3
n (α||β) and AsGal

n , by specifying the integrand. The

integrands in the double-cover scattering equation framework for the NLSM, NLSM ⊕ φ3

and special Galileon theory are given by the expressions

INLSM
n (α) = PTτ (α)× det′AΛ

n , (3.6)

INLSM⊕φ3
n (α||β) = PTτ (α)

([
n∏
a=1

(yσ)a
ya

]
PTT (β) det

[
AΛ
n

]β1...βp
β1...βp

)
, (3.7)

I sGal
n = det′AΛ

n × det′AΛ
n , (3.8)

where (yσ)a ≡ ya + σa. The bold reduced determinant is defined as

det′AΛ
n =

[
n∏
a=1

(yσ)a
ya

]
(−1) PTT (i, j)det

[
AΛ
n

]ij
ij

(3.9)

=

[
n∏
a=1

(yσ)a
ya

]
(−1)i+kTijTjkdet

[
AΛ
n

]ij
jk
, (3.10)

where the second equality is used to define the A′ amplitude in the double cover language,

similar to eq. (2.11). The Parke-Taylor factors and the kinematic matrix are defined by

the following replacement

An → AΛ
n for zab → T−1

ab , (3.11)

PT→ PTT for zab → T−1
ab , (3.12)

PT→ PTτ for zab → τ−1
(a,b), (3.13)

where T−1
ab = (yσ)a − (yσ)b.

Notice that the generalization to theories such as sGal ⊕ NLSM2 ⊕ φ3 or Born-Infeld

theory, among others, is straightforward [18–20].

3.1 The Π matrix

Most integrands in the CHY approach depend on the auxiliary variable zi through the

combination zij = zi − zj . As shown in eqs. (3.11) to (3.13) , we can construct the double

cover integrand by replacing zij with T−1
ij or τ−1

(i,j).
1 This makes for an easy map between

the traditional CHY approach and the new double cover method for most integrands.

However, the Π matrix, defined in refs. [18–20], has elements such as, za ka·kb
zab

, which

so far have not been studied in the double cover framework. Explicitly, the Πβ1,β2,...,βm

1Of course, the measure is also redefined in the double cover prescription.
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matrix, defined in ref. [20], is

Πβ1,...,βm =

j ∈ β b ∈ {β1, . . . , βm} j ∈ β b′ ∈ {β1, . . . , βm}



Aij Πib Aij Πib′ i ∈ β
−−−− −−−−−−−− −−−− −−−−−−−−

Πaj Πab Πaj Πab′ a ∈ {β1, . . . , βm}
−−−− −−−−−−−− −−−− −−−−−−−−
Aij Πib 0 Πib′ i ∈ β
−−−− −−−−−−−− −−−− −−−−−−−−

Πa′j Πa′b Πa′j Πa′b′ a′ ∈ {β1, . . . , βm}

.

Here, the βa’s sets are such that βa ∩ βb = ∅, a 6= b, and β is the complement, namely,

β = {1, 2, . . . , n} \ β1 ∪ β2 ∪ · · · ∪ βm, where n is the total number of particles. The Π

submatrices are given by the expressions

Πib =
∑
c∈βb

ki · kc
zic

, Πib′ =
∑
c∈βb

zc ki · kc
zic

, Πab =
∑
c∈βa
d∈βb

kc · kd
zcd

,

Πab′ =
∑
c∈βa
d∈βb

zd kc · kd
zcd

, Πa′b′ =
∑
c∈βa
d∈βb

zc zd kc · kd
zcd

. (3.14)

As shown in refs. [17, 21], to obtain the usual CHY matrices in the double-cover pre-

scription we use the identification 1
zab
→ Tab = 1

(ya+σa)−(yb+σb)
(see the above section),

which gives us the naive identification za → (ya + σa). However, we need all elements

of Πβ1,...,βm to transform in the same way under a global scaling (y1, σ1, . . . , yn, σn,Λ) →
ρ (y1, σ1, . . . , yn, σn,Λ), ρ ∈ C∗. We use the map2 za → (ya+σa)

Λ . Thus, the Π matrix in the

double-cover representation is given by the replacement,

ΠΛ
β1,β2,...,βm ≡ Πβ1,β2,...,βm for

1

zab
→ Tab, za →

(yσ)a
Λ

. (3.15)

The multi-trace amplitude for interactions among NLSM pions and bi-adjoint scalars is

given by the integrand [20]

INLSM⊕BA
n (α||β1| · · · |βm) = PTτ (α)×

([
n∏
a=1

(yσ)a
ya

]
×PTT (β1) . . .PTT (βm)×Pf ′

[
ΠΛ
β1...βp

])
.

The integrand is the defined using eqs. (3.12), (3.13) and (3.15). The reduced Pfaffian is

defined as

Pf ′
[
ΠΛ
β1...βp

]
= Pf

[
(ΠΛ

β1...βp)
ab′
ab′

]
. (3.16)

2This is in agreement with the single and double-cover equivalence given in ref. [13].
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4 Graphical representation

The graphical representation for effective field theory amplitudes in the double-cover pre-

scription is analogous to one presented in ref. [21]. The only difference is that we are

going to work with determinants instead of Pfaffians. We will briefly review the graphical

notation used in this paper.

First, the Parke-Taylor factor is drawn by a sequence of arrows joining vertices. The

orientation of the arrow represents the ordering,

PTτ (1, . . . , n) =
n

4

3

2

1

= (−1)n ×
n

4

3

2

1

= (−1)n × PTτ (n, . . . , 1) . (4.1)

To describe the half-integrand (−1)
[∏n

a=1
(yσ)a
ya

]
(TijTji) det[(AΛ

n)ijij ], we recall how the

Pfaffian in Yang-Mills theory was represented [21]. In YM, the half-integrand (−1)i+j

·
[∏n

a=1
(yσ)a
ya

]
(Tij)Pf[(ΨΛ

n)ijij ] was represented by a red arrow from i→ j. We associate this

red arrow with the factor Tij of the reduced Pfaffian. In the case of NLSM, we draw two

red arrows, i� j, for the factor TijTji of the reduced determinant. With the new definition

of the NLSM integrand, (−1)i+k
[∏n

a=1
(yσ)a
ya

]
TijTjk det[(AΛ

n)ijjk], we draw two red arrows,

i→ j→ k.

If we choose to fix the punctures (pqr|m) = (123|4) and reduce the determinant with

(i, j) = (2, p), we can graphically represent the NLSM amplitude An(α) by an NLSM-graph,

An(1,2, 3, 4, . . . ,p, . . . , n) =

∫
dµΛ

n

4

3

2

1

n

p

.

Recall that the removed columns and rows (i, j) are written in bold in the partial ordering.

The notation for the fixed punctures by yellow, green and red vertices is the same as in

ref. [21]. When all particles are on-shell, the expression is independent of the choice of

fixed punctures and reduced determinant. However, as we shall see later, when we have

off-shell particles, the expression depends on the choices.

Lastly, the following two properties

An(1,2, 3, 4, . . . ,p, . . . , n) = An(cyc(1,2, 3, 4, . . . ,p, . . . , n)),

An(1,2, 3, 4, . . . ,p, . . . , n) = (−1)nAn(n, . . . ,p, . . . , 4, 3,2, 1) , (4.2)

are satisfied even if some of the particles are off-shell. The graphical representation for

other effective field theories are similar. Also, the double-cover representation reduces to

the usual CHY representation when the green vertex is replaced by a black vertex.

5 The double-cover integration rules

We will formulate the double-cover integration rules, applicable for the effective field theory

amplitudes for the NLSM and special Galileon theory (sGal). Generalizing the integration

– 8 –
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rules to other effective field theories is straightforward. The integration rules share a strong

resemblance to the Yang-Mills integration rules given in ref. [21].

The integration of the double-cover variables ya localizes the integrand to the curves

Ca = 0, with the solutions ya = ±
√
σ2
a − Λ2, ∀ a. The double cover splits into an upper and

a lower Riemann sheet, connected by a branch-cut, defined by the branch-points −Λ and

Λ. The punctures are distributed among the two sheets in all 2n possible combinations.3

When performing the integration of Λ, the two sheets factorize into two single covers

connected by an off-shell propagator (the scattering equation Sτm in eq. (3.1) reduces to

the off-shell propagator under the Λ integration). On each of the two lower-point single

covers three punctures need to be fixed due to the PSL(2,C) redundancy. The branch-cut

closes to a point when Λ → 0, which becomes an off-shell particle. The corresponding

puncture is fixed. In addition, two more punctures need to be fixed on each of the sheets.

These fixed punctures must come from the fixed punctures in the original double cover

(graphically represented by colored vertices, yellow or green). If there is not exactly two

colored vertices on each of the new single covers, the configuration vanishes. We summarize

this in the first integration rule [13, 21];

• Rule-I. All configurations (or cuts) with fewer (or more) than two colored vertices

(yellow or green) vanish trivially.

The first integration rule, Rule-I, is general for any theory formulated in a double-cover

language. In addition, we need to formulate supplementary integration rules specific to the

NLSM and special Galileon amplitudes.

We start by determining how different parts of the integrand (and the measure)

scale with Λ. Without loss of generality, consider a configuration where the punctures

{σp+1, . . . , σn, σ1, σ2} are located on the upper sheet, and the punctures {σ3, σ4, . . . , σp}
are located on the lower sheet. This configuration (or cut) will be graphically represented

by a dashed red line, which separates the two sets. Rule-I forces two of the fixed punctures

to be on the upper sheet, and the other two to be on the lower sheet. By expanding around

Λ = 0, the measure and the Faddeev-Popov determinants become

dµΛ
n

∣∣∣p+1,...,1,2

3, 4,...,p
=
dΛ

Λ
×
[
dσp+1

Sp+1
· · · dσn

Sn

]
×
[
dσ5

S5
· · · dσp

Sp

]
+O(Λ)

=
dΛ

Λ
×dµCHY

n−(p−2)+1×dµ
CHY
(p−2)+1+O(Λ), (5.1)

∆(123)∆(123|4)

Sτ4

∣∣∣∣p+1,...,1,2

3, 4,...,p

=
25

Λ4
(σ12 σ2P3:p

σP3:p1)2

[
1

s34...p

]
(σPp+1:23 σ34 σ4Pp+1:2

)2+O
(
Λ−2

)
,

(5.2)

where P3:p and Pp+1:2 denote the momentum of the off-shell punctures on the upper and

lower sheets, respectively. Here, P3:p = k3 + · · · + kp, Pp+1:2 = kp+1 + · · · + k2 and

s34...p = 2
∑p

i<j,i=3 ki ·kj . For concreteness, we have fixed the punctures (pqr|m) = (123|4).

3Only 2n−1 configurations are distinct, due to a Z2 symmetry.
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Factor

N
o
.

o
f

cu
t

a
rr

ow
s PTτ (α) det′(AΛ

n)

0 Λ0 Λ0

1 — Λ2

2 Λ2 Λ2

3 — —

4 Λ4 —

Table 1. The table displays the dependence of Λ in the integrand factors when expanding around

Λ = 0. Some entries are empty, meaning that they are impossible to achieve. E.g. the Parke-Taylor

factor only appears when an even number of arrows are cut. This is because the PT factor forms a

closed ring. Similarly, the reduced determinant enters with two arrows, so at most two arrows can

be cut.

Graphically, this configuration is represented by

An(1,2, 3, 4, . . . ,p, . . . , n)
∣∣∣p+1,...,1,2

3, 4,...,p
=

4

3

2

1

n

p

. (5.3)

Notice how the measure and the Faddeev-Popov determinants scale with Λ at leading order,

dµΛ
n ∼

dΛ

Λ
, (5.4)

∆(123)∆(123|4)

Sτ4
∼ 1

Λ4
. (5.5)

We also need to know how the Parke-Taylor factor and the reduced determinant scale with

Λ. Table 1 shows how the integrand factors depend on Λ when expanded around Λ = 0.

We see that how the integrand scales with Λ is very dependent on the number of cut arrows.

For an NLSM amplitude, for each possible non-zero cut, we find that

PTτ (1, . . . , n)×det′AΛ
n∼O(Λ6), The dashed red line cuts more than four arrows.

PTτ (1, . . . , n)×det′AΛ
n∼Λ4+O(Λ2), The dashed red line cuts three or four arrows.

PTτ (1, . . . , n)×det′AΛ
n∼Λ2+O(Λ0), The dashed red line cuts two arrows (singular cut).

Similarly, for an sGal-graph, we find that

det′AΛ
n × det′AΛ

n ∼ Λ4 +O(Λ2), The dashed red line cuts one or two arrows

from each of the determinants.

det′AΛ
n × det′AΛ

n ∼ Λ2 +O(Λ2), The dashed red line cuts one or two arrows

from a single the determinant (singular cut).

det′AΛ
n × det′AΛ

n ∼ Λ0 +O(Λ2), The dashed red line cuts no arrows (singular cut).
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We combine this with eqs. (5.4) and (5.5). For an NLSM-graph, there is no residue when

more than four arrows are cut, and the configuration vanishes. When three or four ar-

rows are cut, the factor of 1/Λ4 from the Faddeev-Popov determinants is canceled by the

integrand, and we have a simple pole in Λ. We can evaulate the contribution directly.

However, when only two arrows are cut, we do not have a simple pole, and we need to

expand beyond leading order. We call this configuration a singular cut. We summarize

this in the second integration rule for an NLSM-graph;

• Rule-II (NLSM-graph). If the dashed red line cuts fewer than three arrows over

the NLSM-graph, the integrand must be expanded to next to leading order (singular

cut). If the dashed red line cuts three or four arrows, the leading order expansion is

sufficient. Otherwise, the cut is zero.

We can perform a similar analysis for an sGal-graph. If one or two arrows from each of

the determinants are cut, we have a simple pole and the contribution can be evaluated

directly. Otherwise, the cut is singular and we need to expand beyond leading order. This

produces the second integraion rule for an sGal-graph;

• Rule-II (sGal-graph). If the dashed red line cuts at least one arrow from each of

the determinants, the leading order expansion is sufficient. Otherwise, the integrand

must be expanded to next to leading order.

In ref. [13], this rule was called the Λ-theorem. In general, we want to avoid singular cuts.

If the graph in question is regular (not singular), the following rule apply

• Rule-IIIa (NLSM- and sGal-graphs). When the dashed red line cuts four arrows, the

graph breaks into two smaller graphs (times a propagator). The off-shell puncture

corresponds to a scalar particle.

• Rule-IIIb (NLSM- and sGal-graphs). If the dashed red line cuts three arrows in a

graph, there is an off-shell vector field (gluon) propagating among the two resulting

graphs. The two resulting graphs must be glued by the identity,
∑

M εM µ εM ν = ηµν .

• Rule-IIIc (sGal-graph). If the dashed red line cuts two arrows, there is an off-shell

spin-2 field (graviton) propagating between the two resulting smaller graphs. The two

sub-graphs are glued together by the identity
∑

M εM µαεM νβ = ηµνηαβ.

When there are off-shell gluons or gravitons connecting the sub-graphs, we must replace

the corresponding off-shell momentum by a polarization vector, Pµi → PM µ
i = 1√

2
εM µ
i , in

the reduced determinants [22].

Finally, we note that the integration rules are independent of the embedding,

• Rule-IV. The number of intersection points among the dashed red-line and the arrows

is given mod 2.

We can always find an embedding where the dashed red line cuts any arrow zero or one time.
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6 Three-point functions

Before we look at examples, it is useful to compute the three-point amplitudes that will

work as building blocks for higher-point amplitudes.

We are using the objects defined in eqs. (2.11) and (2.12). For the non-linear sigma

model, the fundamental three-point functions are given by the expressions

Aφ
3

(Pa, Pb, Pc) =

Pa

PbPc

=

∫
dµCHY

3 (σPaPbσPbPcσPcPa)2 PT(Pa, Pb, Pc)
2 = 1 , (6.1)

A′3(Pa, Pb, Pc) =

Pa

PbPc

=

∫
dµCHY

3 (σPaPbσPbPcσPcPa)2 PT(Pa, Pb, Pc)
1

σPaPb σPbPc

sPcPa
σPcPa

= sPcPa , (6.2)

A
(PaPb)
3 (Pa, Pb, Pc) =

Pa

PbPc

=

∫
dµCHY

3 (σPaPbσPbPcσPcPa)2 PT(Pa, Pb, Pc)

× (−1)

σPaPb
det

 sPbPaσPbPa

sPbPc
σPbPc

sPcPa
σPcPa

0

 = sPbPc sPcPa , (6.3)

where Pµa +Pµb +Pµc = 0 and all particles could be off-shell, i.e. P 2
i 6= 0. Using momentum

conservation, we reformulate the expressions as

A′3(Pa, Pb, Pc) = sPcPa = −(P 2
a − P 2

b + P 2
c ), (6.4)

A
(PaPb)
3 (Pa, Pb, Pc) = sPbPc sPcPa = (P 2

c − P 2
a + P 2

b )× (P 2
a − P 2

b + P 2
c )

= A′3(Pc, Pa, Pb)×A′3(Pa, Pb, Pc). (6.5)

We see that the three-point functions in eqs. (6.4) and (6.5) vanish when the particles are

on-shell.

7 Factorization relations

We will presents three different prescriptions for computing NLSM amplitudes. As we will

see, they lead to three different factorization relations.

First, we start with the conventional NLSM prescription given in eq. (2.8) (in the

double-cover language). It is useful to remember that for an odd number of external

particles, the amplitude vanishes,

A2n+1(1, . . . ,Pi, . . . ,Pj , . . . , n) = 0. (7.1)
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This relation holds even when the particles removed from the determinant by the choice

(i, j) are off-shell, i.e. when P 2
i 6= 0 and/or P 2

j 6= 0.

Secondly, we will use the alternative prescription given in eq. (2.11) with two different

gauge fixing choices, resulting in two new factorization formulas. Parts of the results were

reported by us in ref. [22].

In general, we denote the sum of cyclically-consecutive external momenta (modulo

the total number of particles) by Pi:j ≡ ki + · · · + kj . We also use the shorthand no-

tation Pi,j ≡ ki + kj for two (not necessarily consecutive) momenta. We also define

the generalized Mandelstam variables si:i+j ≡ sii+1...i+j and si:i+j,L ≡ sii+1...i+jL, with

si1...ip ≡
∑p

a 6=b,a,b=1 kia · kib .

7.1 Four-point

7.1.1 The usual integrand prescription

Let us start by considering the four-point amplitude, A4(1, 2, 3, 4). Without loss of gener-

ality, we choose the gauge fixing (pqr|m) = (123|4). In order to avoid singular cuts (see

section 5), we remove the columns and rows (i, j) = (1, 3) for the determinant in eq. (2.8).

For notational simplicity, we define In = (1, . . . , n), I(ij)n = (1, . . . , i, . . . , j, . . . , n), and

I(ijk)
n = (1, . . . , i, . . . , j, . . . ,k, . . . , n). Graphically, the amplitude factorizes into

A4(I(13)
4 ) =

∫
dµΛ

4

4 3

21

=

4 3

cut-1

21

+

4
3

2
1

cut-2

+

4 3

21

cut-3

. (7.2)

By applying rule-III, we can evaluate cut-1, finding

4 3

cut-1

21

=

2

P34P34

1

×
(

1

s34

)
×

34

P12

=
A3(P34, 1, 2)×A3(P12, 3, 4)

s34
= 0, (7.3)

where we have used eq. (7.1). Cut-2 can be evaluated in a similar manner. Finally, it is

straightforward to see that the last cut (cut-3 ) is broken into

4 3

21

cut-3

=

P24

13

×
(

1

s24

)
×

P13

24

. (7.4)

From the normalization of the three-point function in eq. (6.1), the first graph evaluates

to (−1), while the second is (using rule-III )

P13

24

=
(σP132 σ24 σ4P13)2

(σP132 σ2P13)× (σP134σ4P13)
× det

[
0 s24

σ24
s24
σ42

0

]
= s2

24 . (7.5)

– 13 –



J
H
E
P
0
5
(
2
0
1
9
)
1
2
9

We can also rewrite the cut using matrix relations defined in appendix A.2,

cut-3 = −A
′
3(P13, 2, 4)A′3(1, 3, P24)

s24
. (7.6)

By evaluating the cuts, we have that

A4(I(13)
4 ) =

A3(P34, 1, 2)A3(P12, 3, 4)

s34
+
A3(P23, 1, 4)A3(3, P14, 2)

s23

− A′3(P13, 2, 4)A′3(1, 3, P24)

s24

= −A
′
3(P13, 2, 4)A′3(1, 3, P24)

s24
= −(−s13) (−s24)

s24
= −s13. (7.7)

Here we have used eqs. (6.4) and (7.1) when evaluating the amplitude. Notice that the

factorization channels with poles s34 and s23 vanish because they factorize into an odd

NLSM amplitude, see eq. (7.1). The last contribution does not vanish, as it is not the

usual NLSM prescription, but rather an off-shell amplitude with the new prescription

given in eq. (2.11). Of course, the subamplitudes would vanish if all particles, including

intermediate particles, were on-shell. In particular if P24 was on-shell (collinear limit). We

can see this reflected by the answer, which would vanish in that case.

7.1.2 The new integrand prescription

In the previous section, we expressed the factorized non-linear sigma model amplitude with

the usual prescription in terms of lower-point amplitudes with the new prescription. In

this section we are going to do the calculations using the new prescription.

Let us consider the four-point amplitude, with gauge fixing (pqr|m) = (123|4). In

order to get a better understanding of the method, we are going to choose two different

reduced determinants, i.e. we consider removing columns and rows such that (ijk) = (123)

in the first example, and (ijk) = (134) in the second example. In the first example, we

have the graphical representation

A′4(I4) =

∫
dµΛ

4

4 3

21

=

4 3

21

cut - 1

+

4
3

2
1

cut - 2

. (7.8)

The graphs can be evaluated as

A′4 (I4) =
∑
M

[
A′3(1, 2, PM34 )A

(P123)
3 (PM12 , 3, 4)

s34
+
A

(1P23)
3 (1, PM23 , 4)A′3(PM41 , 2, 3)

s41

]
. (7.9)

We see that all factorization contributions are glued together by an off-shell vector field

(off-shell gluon). The notation PMi means the replacement Pµi →
1√
2
εM µ
i in the An matrix.

Also, the gluing relation is ∑
M

εM µ
i εM ν

j = ηµν . (7.10)
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Explicitly, the two factorization contributions become

∑
M

A′3(1, 2, PM34 )A
(P123)
3 (PM12 , 3, 4)

s34
=
∑
M

(√
2εM34 · k1

)
× s34

(√
2εM12 · k4

)
s34

=
s14s34

s34
= s14,

(7.11)

and

∑
M

A
(1P23)
3 (1, PM23 , 4)A′3(PM41 , 2, 3)

s23
=
∑
M

(√
2εM23 · k4

)
s41 ×

(√
2εM41 · k3

)
s23

=
s14s34

s23
= s12.

(7.12)

As a second example, consider

A′4(I(134)
4 ) =

∫
dµΛ

4

4 3

21

=

4 3

21

cut - 1

+

4
3

2
1

cut - 2

. (7.13)

The graphs evaluate to

A′4(I(134)
4 ) =

∑
M

A
(1P34)
3 (1, 2, PM34 )A′3(PM12 , 3, 4)

s34
+
A′3(1, P23, 4)A3(3, P41, 2)

s23
. (7.14)

Notice that only one of the factorization contributions (cut-1 ) is glued together by an

off-shell gluon, while the second contribution (cut-2 ) is a purely scalar contribution. Eval-

uating the contributions, we find that

∑
M

A
(1P34)
3 (1, 2, PM34 )A′3(PM12 , 3, 4)

s34
=
∑
M

−
(√

2εM34 ·k2

)
s12×

(√
2εM12 ·k4

)
s34

= −s12s24

s34
= −s13,

(7.15)

and

A′3(1, P23, 4)A3(3, P41, 2)

s23
=
P 2

23 × 0

s23
= 0. (7.16)

The scalar contribution vanishes, as an odd amplitude in the usual prescription vanishes,

see eq. (7.1).

Summing the contributions, we obtain

A′4(I(123)
4 ) = s14 + s12 = −s13, (7.17)

A′4(I(134)
4 ) = −s13 + 0 = −s13. (7.18)

This agrees with eq. (7.7).
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7.2 Six-point

Next, we compute the six-point amplitude using the double-cover formalism. We stick to

the gauge fixing (pqr|m) = (123|4), and to removing the columns and rows (i, j) = (1, 3).

Graphically, the amplitude factorizes into

A6(I(13)
6 ) =

∫
dµΛ

6

6

5

4

3

2

1

=

6

5

4

3

2

1

cut-1

+

6

5

4

3

2

1

cut - 2

+

6

5

4

3

2

1

cut - 3

. (7.19)

We have omitted some factorizations, which evaluate to zero by analogy to the four-point

case. Note that, the cut-1 is straightforward to evaluate, as it factorizes into lower-point

NLSM amplitudes. However, cut-2 and cut-3 do not have straightforward interpretations

(which is why they sometimes are referred to as strange-cuts). Take cut-2 as an example,

it graphically takes the form

6

5

4

3

2

1

cut - 2

=

∫
dµCHY

5

P13
6

5

4
2

×
(

1

s4:6,2

)
×

P4:6,2

13

. (7.20)

The first graph looks non-simple to be computed since there is no way to avoid the singular

cuts. Nevertheless, such as in Yang-Mills theory, ref. [21], this strange-cut can be rewritten

in the following way

∫
dµCHY

5

P13
6

5

4
2

×

P4:6,2

13

= (−1)A′5(P13, 2, 4, 5, 6)×A′3(1, 3, P4:6,2), (7.21)

which comes from the matrix identities given in appendix A.2. We can do a similar rewriting

for cut-3. The full calculation is presented in appendix B.3.

Putting it all together, the six-point amplitude factorizes as

A6(I(13)
6 ) =

A4(1, 2,P3:5, 6)A4(P6:2, 3, 4, 5)

s3:5
− A′5(P13, 2, 4, 5, 6)A′3(1, 3, P4:6,2)

s13

− A′3(P5:1,3, 2, 4)A′5(1, 3, P24, 5, 6)

s24

=
s26s35

s3:5
+ s13

[
s46

s4:6
+
s26 + s46

s56P13

]
+ s24

[
s26 + s46

s56P24

+
s26 + s36 + s46

s5:1

]
. (7.22)

By using momentum conservation, all unphysical poles cancel, and we match with the

known result

A6 (I6) =
(s12 + s23)(s45 + s56)

s123
+

(s23 + s34)(s56 + s61)

s234
+

(s34 + s45)(s56 + s61)

s345

− (s12 + s23 + s34 + s45 + s56 + s61). (7.23)
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The six-point amplitude can also be computed using the new prescription. The first

example with the choice (ijk) = (123) gives, graphically,

A′6(I(123)
6 ) = 6

5 4

3

21

cut - 1

+
6

5 4

3

21

cut - 2

+ 6

5 4

3

21

cut - 3

+ 6

5 4

3

21

cut - 4

. (7.24)

We have carried out the full calculation in appendix B.1. The contributions unambiguously

evaluate to

A′6(I(123)
6 ) = (7.25)

∑
M

[
A′3
(
1, 2, PM3:6

)
A

(P123)
5 (PM12 , 3, 4, 5, 6)

s3:6
+
A′5(1, 2, PM34 , 5, 6)A

(P5:23)
3 (PM5:2, 3, 4)

s34

+
A′3
(
PM4:1, 2, 3

)
A

(1P23)
5 (1, PM23 , 4, 5, 6)

s4:1
+
A′4
(
1, 2, PM3:5, 6

)
A

(P6:23)
4

(
PM6:2, 3, 4, 5

)
s3:5

]
.

Graphically, the second example, with the choice (ijk) = (134), is

A′6(I(134)
6 ) = 6

5 4

3

21

cut - 1

+ 6

5 4

3

21

cut - 2

+ 6

5 4

3

21

cut - 3

+ 6

5 4

3

21

cut - 4

, (7.26)

which becomes (see appendix B.2 to follow the full computation)

A′6(I(134)
6 ) = (7.27)

∑
M

[
A

(1P3:6)
3

(
1, 2, PM3:6

)
A′5(PM12 , 3, 4, 5, 6)

s3:6
+
A

(1P34)
5 (1, 2, PM34 , 5, 6)A′3(PM5:2, 3, 4)

s34

+
A

(1P3:5)
4

(
1, 2, PM3:5, 6

)
A′4
(
PM6:2, 3, 4, 5

)
s3:5

]
+
A3 (3, P4:1, 2)A′5(1, P23, 4, 5, 6)

s4:1
.

Notice that the last contribution (cut-3 ) evaluates to zero. We can check that both exam-

ples with the new integrand prescription reproduce the correct result. The full six-point

calculation for both choices of gauge fixing is presented in appendix B. Notice that in the

first example, all factorization contributions are glued together with off-shell gluons, while

in the second example, three contributions involve off-shell gluons, and one contribution is

purely in terms of scalar particles.

So far we have seen three different kinds of factorization relations. The first kind,

presented in eqs. (7.7) and (7.22), all particles were scalar. In the second case, given by

eqs. (7.9) and (7.25), the intermediate particles were vector fields (off-shell gluons). Finally,
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in the last case, eqs. (7.14) and (7.27), the factorization relation involved both intermediate

scalar and vector fields.4

7.3 Longitudinal contribution

As the non-linear sigma model is a scalar theory, it is an interesting proposition to only

consider longitudinal contributions. An off-shell vector field can be decomposed in terms

of transverse and longitudinal degrees of freedom. Let us consider only including the

longitudinal degrees of freedom.

Practically, this means that instead of using the relation in eq. (7.10), we keep only

the longitudinal sector,∑
L

εLµi εLνj =
kµi k

ν
j

ki · kj
= k

µ
i k

ν
j , with, kµi = −kµj , k

µ
i = −

(
kµi
k2
i

)
. (7.28)

Here we label the polarization vectors by a superscript L instead of M when keeping only

longitudinal degrees of freedom.

In the four-point example, we have that∑
L

[
A′3(1, 2, PL34)A

(P123)
3 (PL12, 3, 4)

s34
+
A

(1P23)
3 (1, PL23, 4)A′3(PL41, 2, 3)

s23

]

= −1

2

[
s2

12

s12
+
s2

14

s14

]
=
s13

2
= −1

2
A4(I4) (7.29)

and ∑
L

A
(1P34)
3 (1, 2, PL34)A′3(PL12, 3, 4)

s34
+
A′3(1, P23, 4)A3(3, P41, 2)

s23

=
1

2

[
s2

12

s12
+

0

s14

]
=
s12

2
6= ρA4(I4) (7.30)

where is ρ is a real constant. The sum of longitudinal contributions in eq. (7.29) is pro-

portional to the correct answer, while the sum of longitudinal contributions in eq. (7.30)

is not.

Applying the same ideas to the six-point amplitude in eq. (7.25), we have that

∑
L

[
A′3
(
1, 2, PL3:6

)
A

(P123)
5 (PL12, 3, 4, 5, 6)

s3:6
+
A′5(1, 2, PL34, 5, 6)A

(P5:23)
3 (PL5:2, 3, 4)

s34

+
A′3
(
PL4:1, 2, 3

)
A

(1P23)
5 (1, PL23, 4, 5, 6)

s4:1
+ (−1)

A′4
(
1, 2, PL3:5, 6

)
A

(P6:23)
4

(
PL6:2, 3, 4, 5

)
s3:5

]

= −1

2
A6(I6). (7.31)

4Although in this case, the factorization contribution where the propagated particle is a scalar field

vanishes, it is simple to find an example where this does not happen. For instance, let us choose the gauge,

(pqr|m) = (134|6), and the reduced An matrix with (ijk) = (146). It is not hard to check that for this

gauge fixing the amplitude, A′6(I(146)6 ), has the two types of factorization contributions which are non-zero.
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Notice that the relative sign of the contribution from even subamplitudes (physical pole)

was flipped in order to reproduce the correct amplitude.5 In the four-point example, all

subamplitudes are odd, and no relative sign flip is needed. All the longitudinal contributions

are computed in appendix B.4.

Now, let us focus on the factorization relation given in eq. (7.27) and its longitudinal

contributions

∑
L

[
(−1)i1

A
(1P3:6)
3

(
1, 2, PL3:6

)
A′5(PL12, 3, 4, 5, 6)

s3:6
+(−1)i2

A
(1P34)
5 (1, 2, PL34, 5, 6)A′3(PL5:2, 3, 4)

s34

+(−1)i3
A

(1P3:5)
4

(
1, 2, PL3:5, 6

)
A′4
(
PL6:2, 3, 4, 5

)
s3:5

]
+
A3 (3, P4:1, 2)A′5(1, P23, 4, 5, 6)

s4:1

6= ρA6(I6), (7.32)

where the non-equality is preserved for all 23 = 8 possible combinations of relative signs, i.e.

(i1, i2, i3) ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}. Thus,

like the four-point example, the amplitude with both off-shell gluons and scalars does

not reproduce the full answer when only longitudinal contributions are kept. Again, the

longitudinal contributions are presented in appendix B.4.

In summary, we have obtained examples of three different factorization relations, in-

volving only intermediate scalars, off-shell gluons, or both scalars and off-shell gluons,

respectively. In the case where we have only off-shell gluons, we are able to reproduce the

full answer by only keeping the longitudinal degrees of freedom (with a relative sign flip

between even and odd factorization contributions).

8 General factorization relations

The factorization relations from the previous section can be generalized. In this section, we

present three different factorization formulas. One formula is given in terms of exchange

of off-shell vector fields, while the other two formulas are given in terms of purely scalar

fields.

First, let us consider the case, A2n(I(13)
2n ). Thus, as in the section 7.1.1, we choose the

gauge fixing (pqr|m) = (123|4) and the reduced matrix with (ij) = (13), namely [A2n]13
31.

Applying the integration rules, the amplitude becomes

A2n(I(13)
2n ) =

n∑
i=3

A′2(n−i+2) (1, 2, P3:2i−1, 2i, . . . , 2n)×A′2(i−1) (P2i:2, 3, 4, . . . , 2i−1)

s3:2i−1
+

(−1)

n+1∑
i=3

A′2(n−i+2)+1 (1, 3, P4:2i−2,2, 2i−1, . . . , 2n)×A′2(i−1)−1 (P2i−1:1,3, 2, 4, . . . , 2i−2)

s4:2i−2,2
.

(8.1)

5We have tested all possible sign combinations, and this is the only one which is proportional to the

correct amplitude.
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This formula has been check up to ten points. In order to obtain the this relation, we used

the matrix identities formulated in appendix A.2. In the first line, we used that

A2i (. . . ,Pp, . . . ,Pq, . . . , Pr, . . .) = A2i (. . . ,Pp, . . . , Pq, . . . ,Pr, . . .)

= A2i (. . . , Pp, . . . ,Pq, . . . ,Pr, . . .)

= A′2i (. . . ,Pp, . . . ,Pq, . . . ,Pr, . . .) . (8.2)

For the second line, we used properties I and III in appendix A.2.

Thus, as the formula obtained in eq. (8.1), our second factorization relation, that

was already presented in ref. [22], is supported on the double-cover formalism. In order to

generalize the eqs. (7.9) and (7.25), we choose the same gauge fixing, (pqr|m) = (123|4), and

the reduced matrix with, (ijk) = (123), (i.e. [A2n]12
23). By the integration rules formulated

in section 5, it is straightforward to see the amplitude turns into

A′2n (I2n) =
∑
M

 n∑
i=3

A′2(n−i+2)

(
1, 2, PM3:2i−1, 2i, . . . , 2n

)
×A(P2i:23)

2(i−1)

(
PM2i:2, 3, 4, . . . , 2i− 1

)
s3:2i−1

+

n+1∑
i=3

A′2(n−i+2)+1

(
1, 2, PM3:2i−2, 2i− 1, . . . , 2n

)
×A(P2i−1:23)

2(i−1)−1

(
PM2i−1:2, 3, 4, . . . , 2i− 2

)
s3:2i−2

+
A′3
(
PM4:1, 2, 3

)
×A(1P23)

2n−1

(
1, PM23 , 4, . . . , 2n

)
s4:1

 , (8.3)

where we use eq. (7.10). This second general formula has been verified up to ten points.

On the other hand, from the results obtained in the eqs. (7.29) and (7.31) for four

and six points, respectively, we can generalize the idea presented in section 7.3 to higher

number of points. Therefore, by considering just the longitudinal degrees of freedom in

eq. (8.3), we conjecture the following factorization formula [22],

A′2n(I2n) = 2
∑
L

 n∑
i=3

A′2(n−i+2)

(
1, 2, PL3:2i−1, 2i, . . . , 2n

)
×A(P2i:23)

2(i−1)

(
PL2i:2, 3, 4, . . . , 2i−1

)
s3:2i−1

+(−1)

n+1∑
i=3

A′2(n−i+2)+1

(
1, 2, PL3:2i−2, 2i−1, . . . , 2n

)
×A(P2i−1:23)

2(i−1)−1

(
PL2i−1:2, 3, 4, . . . , 2i−2

)
s3:2i−2

+(−1)
A′3
(
PL4:1, 2, 3

)
×A(1P23)

2n−1

(
1, PL23, 4, . . . , 2n

)
s4:1

 , (8.4)

where we use eq. (7.28). Finally, by applying the identities

A
(PpPq)
2i

(
. . . , Pp, . . . , Pq, . . . , Pr, . . .

)
= A

(PqPr)
2i

(
. . . , Pp, . . . , Pq, . . . , Pr, . . .

)
= −(P 2

p+P 2
q +P 2

r )×A′2i
(
. . . ,Pp, . . . ,Pq, . . . ,Pr, . . .

)
,

A
(PpPq)
2i+1

(
. . . , Pp, . . . , Pq, . . . , Pr, . . .

)
= A

(PqPr)
2i+1

(
. . . , Pp, . . . , Pq, . . . , Pr, . . .

)
= (P 2

p−P 2
q−P 2

r )×A′2i+1

(
. . . ,Pp, . . . ,Pq, . . . ,Pr, . . .

)
,

(8.5)
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which are a consequence from the properties in appendix A.2, it is straightforward to see

the eq. (8.4) becomes

A′2n(I2n) =

n∑
i=3

A′2(n−i+2)

(
1,2,P3:2i−1,2i, . . . ,2n

)
×A′2(i−1)

(
P2i:2,3,4, . . . ,2i−1

)
s3:2i−1

+
n+1∑
i=3

A′2(n−i+2)+1

(
1,2,P3:2i−2,2i−1, . . . ,2n

)
×A′2(i−1)−1

(
P2i−1:2,3,4, . . . ,2i−2

)
s3:2i−2

+(−1)
A′3
(
P4:1,2,3

)
×A′2n−1

(
1,P23,4, . . . ,2n

)
s4:1

. (8.6)

This is our third general factorization formula.

8.1 A new relationship for the boundary terms

As we argued in ref. [22], the amplitudes with an odd number of particles, i.e. amplitudes of

the form A′2m+1(. . . ,Pa, . . .) (odd amplitude), are proportional to P 2
a since that them must

vanish when all particles are on-shell. Thus, the poles given by the odd contributions,

namely expressions of the form
A′2m+1(...,Pa,...)×A′2k+1(...,Pb,...)

2Pa·Pb , are spurious and, therefore,

those terms are on the boundary of any usual BCFW deformation [23]. In particular,

under the BCFW deformation,

kµ2 (z) = kµ2 + z qµ , kµ3 (z) = kµ3 − z q
µ , with q2 = 0, (8.7)

all even contributions (physical poles), which are given by the sum

n∑
i=3

A′2(n−i+2)

(
1, 2, P3:2i−1, 2i, . . . , 2n

)
×A′2(i−1)

(
P2i:2, 3, 4, . . . , 2i− 1

)
P 2

3:2i−1(z)
(8.8)

in eqs. (8.1) and (8.6), are localized over the z-plane at, P 2
3:2i−1(z) = 0. Thus, by the above

discussion, all odd contributions in eqs. (8.1) and (8.6) are localized at the point z = ∞
on the z-plane and, hence, we call those odd amplitudes the boundary terms.

Now, clearly, by comparing the factorization relations obtained in eqs. (8.1) and (8.6),

this is straightforward to see that one arrives to the identity

n+1∑
i=3

A′2(n−i+2)+1

(
1, 2, P3:2i−2, 2i−1, . . . , 2n

)
×A′2(i−1)−1

(
P2i−1:2, 3, 4, . . . , 2i−2

)
s3:2i−2

+(2 ↔ 3)

=
A′3
(
P4:1, 2, 3

)
×A′2n−1

(
1, P23, 4, . . . , 2n

)
s4:1

, (8.9)

which lies on the boundary of any usual BCFW deformation. We have checked this identity

up to n = 10.

9 A novel recursion relation

In this section, we are going to present a new recursion relationship, which can be used to

write down any NLSM amplitude in terms of the three-point building-block, A′3(Pa, Pb, Pc)=

−(P 2
a − P 2

b + P 3
c ), given in eq. (6.2).
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Previously, in eq. (8.4), we arrived at an unexpected factorization expansion, which,

although it emerged accidentally from the integration rules, a formal proof is yet unknown.6

Thus, since applying the integration rules is an iterative process, we would like to know

if the relationship in eq. (8.4) could be extended to off-shell amplitudes (both for an even

and odd number of particles). Here, we are going to show how to do that.

First, consider the four-point computation, A′4(P1, P2, P3, 4), where the particles,

{P1, P2, P3}, can be off-shell. By the integration rules, we obtain the same decomposi-

tion as in eq. (7.9),

A′4 (P1, P2, P3, 4) = (9.1)∑
M

[
A′3(P1, P2, P

M
34 )A

(P12P3)
3 (PM12 , P3, 4)

sP3P4

+
A

(P1P23)
3 (P1, P

M
23 , 4)A′3(PM41 , P2, P3)

sP4P1

]
= −s4P2 .

Now, by using the longitudinal gluing relation given in eq. (7.28), i.e.
∑

L ε
µL
34 ε

ν L
12 = P

µ
34P

ν
12

and
∑

L ε
µL
23 ε

ν L
41 = Pµ23P

ν
41, over the above factorized amplitude, one arrives at

(−2)
∑
L

[
A′3(P1, P2, P

L
34)A

(P12P3)
3 (PL12, P3, 4)

sP3P4

+
A

(P1P23)
3 (P1, P

L
23, 4)A′3(PL41, P2, P3)

sP4P1

]

=
−(P 2

1 − P 2
2 + P 2

34) s4P12

P 2
34

+
−(P 2

41 − P 2
2 + P 2

3 ) s4P23

P 2
41

. (9.2)

Clearly, since {P1, P2, P3} are off-shell, the results found in eqs. (9.1) and (9.2) do not

match. However, there is a simple way to make them coincide. Instead of using the usual

longitudinal identity, we employ a generalized version where P
µ
a is redefined as

P
µ
34 = −

(
Pµ34

P 2
34

)
→ P

µ
34 = −

(
Pµ34

P 2
1−P 2

2 +P 2
34

)
, P

µ
41 = −

(
Pµ41

P 2
41

)
→ P

µ
41 = −

(
Pµ41

P 2
41−P 2

2 +P 2
3

)
.

It is straightforward to check that under this redefinition, the factored expression in eq. (9.2)

reproduces the same result as in eq. (9.1). The generalization to a higher number of points

is straightforward, so, when the particles {P1, P2, P3} are off-shell, the longitudinal gluing

relations that must be used in eq. (8.4) are given by∑
L

A′2m+1(PL
r , . . . ,P2, . . . ,P3, . . .)×A(P1Pk)

2q+1 (P1, . . . , P
L
k , . . . , ) →

∑
L

εµLr εν Lk = P
µ
rP

ν
k ,∑

L

A
(P1Pk)
2j (P1, . . . , P

L
k , . . . , )×A′2i(PL

r , . . . ,P2, . . . ,P3, . . .) →
∑
L

εµLk εν Lr = P
µ
kP

ν
r ,

where, Pµr = −Pµk , and

P
µ
r = −

(
Pµr

P 2
r − P 2

2 + P 2
3

)
, P

µ
k = −

(
Pµk

P 2
1 + P 2

k

)
. (9.3)

6It is important to remind ourselves that the longitudinal contributions give the right answer only when,

after applying the integration rules, all factorization channels are mediated by an off-shell vector field. This

was exemplified in section 7.3.
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Thus, by applying the identities in eq. (8.5), we obtain the following simple and compact

expression

A′2n(P1, P2, P3, 4, . . . , 2n) =

n∑
i=3

A′2(n−i+2)

(
P1, P2, P3:2i−1, 2i, . . . , 2n

)
×A′2(i−1)

(
P2i:2, P3, 4, . . . , 2i− 1

)
s3:2i−1

+
n+1∑
i=3

A′2(n−i+2)+1

(
P1, P2, P3:2i−2, 2i− 1, . . . , 2n

)
×A′2(i−1)−1

(
P2i−1:2, P3, 4, . . . , 2i− 2

)
P 2

1 − P 2
2 + P 2

3:2i−2

+ (−1)
A′3
(
P4:1, P2, P3

)
×A′2n−1

(
P1, P23, 4, . . . , 2n

)
P 2

4:1 − P 2
2 + P 2

3

. (9.4)

Obviously, when {P1, P2, P3} become on-shell, we rediscover eq. (8.6).

In order to achieve a completed recursion-relationship, it is needed to get a closed

formula for the odd amplitude, A′2n+1(P1, P2, P3, 4, . . . , 2n + 1). Therefore, applying the

integration rules over this amplitude, one obtains the following two types of combinations

I.
∑
M

A′2m+1(PM
r , . . . ,P2, . . . ,P3, . . .)×A(P1Pk)

2j (P1, . . . , P
M
k , . . . , ),

II.
∑
M

A
(P1Pk)
2q+1 (P1, . . . , P

M
k , . . . , )×A′2i(PM

r , . . . ,P2, . . . ,P3, . . .).

We found that, to land on the right result by using just longitudinal degrees of freedom,

the combination I must be glued by the relation

I.
∑
L

εµLr εν Lk = (−1)(P 2
1 − P 2

2 + P 3
3 )× PµrP

ν
k, (9.5)

where P
µ
r and P

ν
k are defined in eq. (9.3), while the combination II has to be discarded.

Note that the overall factor, (P 2
1 − P 2

2 + P 3
3 ), implies that when the off-shell external

particles become on-shell, the amplitude A′2n+1 vanishes trivially, such as it is required.

To summarize, after applying the integration rules over an even or odd amplitude,

such that the factorized subamplitudes are glued only by virtual vector fields, then, we can

compute this process just by considering the longitudinal degrees of freedom and the rules

given in the following box

A′2m+1(P ε
r , . . . ,P2, . . . ,P3, . . .)

∣∣∣
εµr→P

µ
r

Product Allowed⇐==========⇒ A
(P1Pk)
2q+1 (P1, . . . , P

ε
k , . . . , )

∣∣∣
εµk→P

µ
k

Product
Allowed

~www�×(−1) (P 2
1−P 2

2 +P 2
3 )

~www� Product
Forbidden

A
(P1Pk)
2j (P1, . . . , P

ε
k , . . . , )

∣∣∣
εµk→P

µ
k

Product Allowed⇐==========⇒ A′2i(P
ε
r , . . . ,P2, . . . ,P3, . . .)

∣∣∣
εµr→Pµr
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where P
µ
r and P

ν
k are given in eq. (9.3). Notice that the horizontal rules on the box work

over the even amplitudes, i.e. A′2n(P1, P2, P3, 4, . . . , 2n), while the vertical rules work over

the odd ones, A′2n+1(P1, P2, P3, 4, . . . , 2n+ 1).

Finally, by employing the identities in eq. (8.5) and the above box, we are able to write

down a compact formula for A′2n+1(P1, P2, P3, 4, . . . , 2n+ 1),

A′2n+1(P1, P2, P3, 4, . . . , 2n+1) =
(
P 2

1−P 2
2 +P 2

3

)
×

[
n+1∑
i=3

(
1

P 2
1−P 2

2 +P 2
3:2i−1

)

×
A′2(n−i+2)+1

(
P1, P2, P3:2i−1, 2i, . . . , 2n+1

)
×A′2(i−1)

(
P2i:2, P3, 4, . . . , 2i−1

)
s3:2i−1

+

(
1

P 2
4:1−P 2

2 +P 2
3

)
×
A′3
(
P4:1, P2, P3

)
×A′2n

(
P1, P23, 4, . . . , 2n+1

)
s4:1

]
.

(9.6)

Evidently, the formulas, eqs. (9.4) and (9.6), give us a novel recursion relation, which we

have checked against known results for up to ten points. The big advantage with this

relation is that it is purely algebraic, as any non-linear sigma model amplitude can be

decomposed to off-shell three-point amplitudes (without solving any scattering equations).

10 The soft limit and a new relation for ANLSM⊕φ3

n

The soft limit for the U(N) non-linear sigma model in its CHY representation was already

studied by Cachazo, Cha and Mizera (CCM) in ref. [19]. One of the main results is given

by the expression (at leading order)

An(1, . . . , n) = ε

n−2∑
a=2

2 k̃n · kaANLSM⊕φ3
n−1 (1, . . . , n− 1||n− 1, a, 1) +O(ε2), (10.1)

where kµn = ε k̃µn and ε→ 0.

In this section we carry out, in detail, the soft limit behaviour at six-point, but using

the new recursion relation proposed in section 9. Although the generalization to a higher

number of points is not straightforward, it is not complicated. We will not take into account

the general case in this work.

Let us consider the amplitude, A6(1, 2, 3, 4, 5, 6) = A′6(5, 6, 1, 2, 3, 4), where the soft

particle is, kµ6 = ε k̃µ6 , with ε→ 0. From eq. (9.4), we have

A′6(5, 6, 1, 2, 3, 4) =
A′3(5, 6, P1:4)×A′5(P56, 1, 2, 3, 4)

P 2
56

−A
′
3(P2:5, 6, 1)×A′5(5, P61, 2, 3, 4)

P 2
61

+
A′3(P3:6, 1, 2)×A′5(5, 6, P12, 3, 4)

P 2
12

+
A′4(5, 6, P1:3, 4)×A′4(P4:6, 1, 2, 3)

P 2
1:3

= −A′5(P56, 1, 2, 3, 4)+A′5(5, P61, 2, 3, 4)−A′5(5, 6, P12, 3, 4)−2 ε k̃6·k4×A′4(P456, 1, 2, 3)

s45+2ε k̃6·P45

,

(10.2)
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where the three-point building-blocks in eq. (6.3) have been used. Applying the off-shell

formula proposed in eq. (9.6), it is not hard to check that, at leading order, the above

five-point amplitudes become

−A′5(P56, 1, 2, 3, 4) = (2 ε k̃6 · k5)

[
A′4(P51, 2, 3, 4)

s51
+
A′4(5, P12, 3, 4)

s12

]
, (10.3)

A′5(5, P61, 2, 3, 4) = (2 ε k̃6 · k1)

[
A′4(P51, 2, 3, 4)

s51
+
A′4(5, P12, 3, 4)

s12

]
, (10.4)

−A′5(5, 6, P12, 3, 4) = −(2 ε k̃6 · P125)× A′4(5, P12, 3, 4)

s12
− 2 ε k̃6 · k4. (10.5)

Therefore, the six-point amplitude at leading order in ε is given by

A6(1, 2, 3, 4, 5, 6) = (2 ε k̃6 · k2)

[
−A

′
4(P51, 2, 3, 4)

s15
− A′4(5, P12, 3, 4)

s12

]
+(2 ε k̃6 · k3)

[
−A

′
4(P51, 2, 3, 4)

s15

]
+(2 ε k̃6 · k4)

[
−A

′
4(P51, 2, 3, 4)

s15
− A′4(P45, 1, 2, 3)

s45
− 1

]
. (10.6)

Now, from the CCM formula in eq. (10.1) one has

A6(1, 2, 3, 4, 5, 6) = (2 ε k̃6 · k2)×ANLSM⊕φ3
5 (1, 2, 3, 4, 5||5, 2, 1)

+(2 ε k̃6 · k3)×ANLSM⊕φ3
5 (1, 2, 3, 4, 5||5, 3, 1)

+(2 ε k̃6 · k4)×ANLSM⊕φ3
5 (1, 2, 3, 4, 5||5, 4, 1). (10.7)

Although at first glance, the eqs. (10.6) and (10.7) do not seem to be the same, notice that

by choosing the gauge, (pqr|m) = (512|3), the amplitude ANLSM⊕φ3
5 (1, 2, 3, 4, 5||5, 2, 1)

turns into

ANLSM⊕φ3

5 (1, 2, 3, 4, 5||5, 2, 1) =

∫
dµΛ

5
5

4 3

2

1

=
5

4 3

2

1

cut - 1

+
5

4 3

2

1

cut - 2

= −A
φ3

3 (1, 2, P3:5)×A′4(5, P12, 3, 4)

s12
−A

φ3

3 (1, P2:4, 5)×A′4(P51, 2, 3, 4)

s15

= −A
′
4(5, P12, 3, 4)

s12
−A

′
4(P51, 2, 3, 4)

s15
, (10.8)

where we employed the integration rules, the building-block, Aφ
3

3 (P1, P2, P3) = 1, and the

second property from the appendix A.2. Following the same procedure, it is straightforward

to see

ANLSM⊕φ3
5 (1, 2, 3, 4, 5||5, 3, 1) = −A

′
4(P51, 2, 3, 4)

s15
. (10.9)
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Clearly, the first two lines in eqs. (10.6) and (10.7) match perfectly, however, to compare

the last lines we must take care. By direct computation, it is not hard to show that, in

fact, the third lines in eqs. (10.6) and (10.7) produce the same result, but, we can extract

more information from them. For example, under the gauge fixing, (pqr|m) = (512|3), the

amplitude ANLSM⊕φ3
5 (1, 2, 3, 4, 5||5, 4, 1) is given by the cuts

ANLSM⊕φ3
5 (1, 2, 3, 4, 5||5, 4, 1) =

∫
dµΛ

5
5

4 3

2

1

=
5

4 3

2

1

cut - 1

+
5

4 3

2

1

Singular - cut

= −A
′
4(P51, 2, 3, 4)

s15
+ Singular-cut. (10.10)

Clearly, by comparing the above expression with the last line in eq. (10.6), we arrive at

Singular-cut = −A
′
4(P45, 1, 2, 3)

s45
− 1, (10.11)

which is a simple but strong result. As it has been argued several times [13, 21] (see

section 5), the integration rules, which were obtained by expanding at leading order the Λ

parameter of the double cover representation, can not be applied over singular cuts. In order

to achieve an extension of these rules to singular cuts, one must expand beyond leading

order the Λ parameter and find a pattern, which is a highly non-trivial task. Nevertheless,

eq. (10.11) tells us that the soft limit behaviour could help us to figure out this issue. This

is an interesting subject to be studied in a future project.

10.1 A new relation for ANLSM⊕φ3

n

In the previous section, we observe that, using the recursion relation proposed in sec-

tion 9, the soft limit behaviour of the six-point amplitude, A6(1, 2, 3, 4, 5, 6), gives a factor-

ized formula for ANLSM⊕φ3
5 (1, 2, 3, 4, 5||5, a, 1) in terms of off-shell NLSM amplitudes. In

this section, we are going to show a new factorization formula for the general amplitude,

ANLSM⊕φ3
n (1, . . . , n||n, a, 1).

First, let us consider the gauge fixing (pqr|m) = (1an|2), so, we can suppose that the

set of particles, {P1, Pa, Pn}, are off-shell (here a is a label between 2 < a < n). Since the

ANLSM⊕φ3
n (1, . . . , n||n, a, 1) amplitude vanishes trivially when n is even, then, it is enough

to define, n = 2m + 1. Thus, applying the integration rules with the previous setup the

amplitude is factorized into

ANLSM⊕φ3
n (1, . . . , a− 1, a, a+ 1, . . . , n||n, a, 1) = (10.12)

ba2c∑
i=2

A′2i(P2i:n, 1, 2, . . . , 2i− 1)×ANLSM⊕φ3
2(m−i)+3 (P1:2i−1, 2i, . . . , a, . . . , n||n, a, P1:2i−1)

s1:2i−1
+

m∑
i=da2e

A′2i(P2i+1:1,2, . . . ,a, . . . , 2i)×ANLSM⊕φ3
2(m−i)+3 (1, P2:2i, 2i+ 1, . . . , n||n, P2:2i, 1)

s2:2i
,
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where bxc and dxe are the Floor and Ceiling functions, respectively. Notice that when

a = 3, the first line doesn’t contribute because of the properties of the Floor function.

In the particular case when a = 2, we choose the gauge fixing (pqr|m) = (12n|3), and

the factorization relation becomes

ANLSM⊕φ3
n (1, 2, . . . , n||n, 2, 1) = (10.13)

A′2m(n, P12, 3, . . . , n− 1)×ANLSM⊕φ3
3 (P3:n, 1, 2||P3:n, 2, 1)

s3:n
+

m∑
i=2

A′2i(P2i+1:1, 2, 3, . . . , 2i)×ANLSM⊕φ3
2(m−i)+3 (1, P2:2i, 2i+ 1, . . . , n||n, P2:2i, 1)

s2:2i
.

Clearly, when n = 2m+1 = 5, the relations obtained above are in agreement with the ones

in eqs. (10.8) and (10.9).

11 Special Galileon theory

In ref. [18], Cachazo, He and Yuan proposed the CHY prescription to compute the S-Matrix

of a special Galileon theory (sGal). The Galileon theories arise as effective field theories in

the decoupling limit of massive gravity [24–26]. The special Galileon theory was discovered

in refs. [18, 27] as a special class of theory with soft limits that vanish particularly fast.

As discussed previously (for more details, see ref. [18]), the CHY prescription of the

sGal is given by the integral

AsGal
n =

∫
dµCHY

n (zpqzqrzrp)
2 ×

[
det′An × det′An

]
. (11.1)

From this expression, it is straightforward to see the sGal is the square of the NLSM,

where the product is by means of the field theory Kawai-Lewellen-Tye (KLT) kernel [28].

Schematically, one has

AsGal
n = An ⊗

KLT
An, (11.2)

where the KLT matrix, usually denoted as S[α|β], is the inverse matrix of the double-color

partial amplitude for the bi-adjoint φ3 scalar theory [1, 3]. Notice that, from this double

copy formula, we can use the whole technology developed for NLSM and apply it in sGal.

Nevertheless, since our main aim is to show how the integration rules work, we will not

use eq. (11.2).

11.1 A simple example

In this section, we will show how the integration rules work in a theory without partial

ordering. As a simple example, we will calculate the four-point amplitude for sGal.

From eq. (3.8), the sGal in the double cover representation is given by the integral

AsGal
n =

∫
dµΛ

n

(−1)∆(pqr)∆(pqr|m)

Sτm
×
[
det′AΛ

n × det′AΛ
n

]
, (11.3)
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where we have defined, det′AΛ
n =

∏n
a=1

(yσ)a
ya
× det′AΛ

n . After choosing a gauge fixing, by

the rule-I in section 5 we know that the Faddeev-Popov factor goes as, (−1)∆(pqr)∆(pqr|m)
Sτm

∼
Λ−4 + O(Λ−2), (eq. (5.4)). Thus, in order to cancel this Λ−4 factor, at leading order, a

cut-contribution in the special Galileon theory must cut at least one arrow of each reduced

determinant, this fact comes from table 1. This is summarized in Rule-II. For example, for

the four-point amplitude, AsGal
4 (1, 2, 3, 4), let us consider the following four different setups

4 3

21

,

4 3

21

,

4 3

21

,

4 3

21

, (11.4)

where the red/black arrows denote a given reduced determinant. Clearly, the first two

graphs with reduced matrices, (AΛ
4 )12

12× (AΛ
4 )34

34 and (AΛ
4 )13

34× (AΛ
4 )14

14, respectively, have the

following singular cuts

4 3

21

→ det′AΛ
4 × det′AΛ

4

∣∣∣12

34
∼ Λ0 ,

4 3

21

→ det′AΛ
4 × det′AΛ

4

∣∣∣41

23
∼ Λ2 .

On the other hand, the third and fourth graphs do not have any singular cuts, therefore,

we can apply the integration rules over them.

11.1.1 The four-point computation

To carry out the four-point sGal amplitude, we choose the fourth setup in eq. (11.4). Thus,

from the integration rules, we have three cut contributions given by

AsGal
4 (1, 2, 3, 4) =

∫
dµΛ

4

4 3

21

=

4 3

21

cut - 1

+

4 3

21

cut - 2

+

4 3

21

cut - 3

. (11.5)

It is straightforward to see that the first contribution vanishes trivially,

4 3

21

cut - 1

=


2

P34

1

Pϵ M

×( 1

s34

)
×


3

P12

4

Pϵ M
 =

∑
M

(σ12σ2P34σP341)2×

PT(1, P34) det
[
(A3)1P34

1P34

]
× 1

σP341
det
[
(A3)P34

1

]∣∣∣
P34→

εM34√
2

×
(

1

s34

)
×


3

P12

4

Pϵ M
 = 0,

where we used the identity, det
[
(A3)1P34

1P34

]
= 0. The first and second reduced determinants

correspond to the black and red arrows, respectively. In the following, we associate the

first reduced determinant with the black arrows, and the second reduced determinant with
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the red arrows. By a similar computation, the cut-3 also vanishes, then, the only non-zero

contribution comes from the cut-2.

4 3

21

cut - 2

=


4

P23

1

Pϵ M,M'

×( 1

s14

)
×


3

P14

2

Pϵ M,M'

 =
∑
M,M ′

(σ41σ1P23σP234)2×

[
1

σ41σ1P23

det
[
(A3)41

1P23

]∣∣∣
P23→

εM23√
2

× 1

σP234σ41
det
[
(A3)P234

41

]∣∣∣
P23→

εM
′

23√
2

]
×
(

1

s14

)
×

(σ23σ3P14σP142)2×

[
1

σP143
det
[
(A3)P14

3

]∣∣∣
P14→

εM14√
2

× 1

σ3P14

det
[
(A3)3

P14

]∣∣∣
P14→

εM
′

14√
2

]
= −s12 s13 s14 ,

where the completeness identities,
∑

M εµM23 εν M14 = ηµν and
∑

M ′ ε
µM ′

23 εν M
′

14 = ηµν , have

been used. Therefore, we obtain

AsGal
4 (1, 2, 3, 4) = −s12 s13 s14, (11.6)

which is the right answer.

Finally, it is straightforward to generalize this simple example to a higher number of

points. Additionally, it would be interesting to understand the properties of the special

Galileon theory similar to ones obtained for NLSM in sections 7.3, 8.1 and 9.

12 Conclusions

The double-cover version of the CHY formalism is an intriguing extension that sheds new

light on how scattering amplitudes can emerge as factorized pieces. Focusing on the non-

linear sigma model, we have illustrated how unphysical channels appear at intermediate

steps, always canceling in the end, and thus producing the right answer. The origin of

factorizations is the appearance of one “free” scattering equation. This is the origin of the

off-shell channel through which the amplitudes factorize.

We have analyzed the factorizations obtained in the non-linear sigma model because

they perfectly illustrate the mechanism, and the cancellations that eventually render the

full result free of unphysical poles. For this theory, we have obtained three different fac-

torization relationships, two of them emerged naturally from the double-cover framework

(by using the A2n and A′2n prescriptions), while the other one was obtained fortuitously

by considering the longitudinal degrees of freedom of the cut-contributions from the new

A′2n prescription. By comparing to BCFW on-shell recursion relations we have found a

perfect correspondence between the unphysical terms of the double-cover formalism and

terms that arise from poles at infinity in the BCFW formalism. In that sense, the double-

cover version of CHY succeeds in evaluating what appears as poles at infinity in BCFW

recursion as simple CHY-type integrals of the double cover. It would be interesting if this

correspondence could be made more explicit. Certainly, it hints at the possibility that
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an alternative formulation of the problem of poles at infinity in BCFW recursion exists,

without recourse to the particular double-cover formalism.

Using the new prescription for the reduced determinant in the integrand, we found

a factorization relation where all the intermediate off-shell particles are spin-1 (gluons).

The corresponding momenta in the reduced determinants are replaced by polarization

vectors. We would like to investigate further the connection between this new object and

the integrand for generalized Yang-Mills-Scalar theory [18]. At first sight, we thought

that this new matrix could be related to the novel model proposed by Cheung, Remmen,

Shen, and Wen in [29, 30], nevertheless, after comparing the numerators at the four-point

computation, the relation among these two approaches is unclear.

On the other hand, when we replaced the off-shell gluons with only the longitudinal

degrees of freedom, we were able to rewrite the factorized pieces in terms of lower-point

NLSM amplitudes in the new prescription, with up to three off-shell punctures. This is a

very surprising result, and understanding the origin of this connection is left for future work.

The big advantage of being able to rewrite the factorized pieces is that we can iteratively

promote the lower-point NLSM amplitudes to the double cover, which would lead to further

factorization. Thus, any NLSM amplitude can be factorized entirely in terms of off-shell

three-point amplitudes. This is a novel off-shell recursion relation. The resulting expression

is algebraic, and no scattering equation needs to be solved. We have checked the validity

of the recursion relation up to ten points (17 points for odd amplitudes). We would like to

find the connection between the recursion relation and Berends-Giele currents [20, 31–37].

The novel recursion relation can also be used to investigate singular cuts and NLSM⊕φ3

amplitudes through the soft limit. CCM showed how the soft limit of an NLSM amplitude

can be expressed in terms of NLSM ⊕ φ3 amplitudes [19]. We calculated the soft limit

of a six-point NLSM amplitude in two ways, using the CCM formula and using the novel

recursion relation. This gives a relation for a specific singular cut. Further investigations

into the nature of the soft limits might reveal insight into the singular cuts in general. Also,

we were able to find a factorization relation for the NLSM ⊕ φ3 amplitudes.

Lastly, we showed how the special Galileon amplitudes can be calculated in a double

cover language. One intriguing feature is that for some configurations, the off-shell particle

propagating between the lower-point pieces is spin-2 (graviton). So, we have observed

that for the NLSM, off-shell gluons appear, while for the special Galileon theory, both

off-shell gluons and gravitons appear. This might be connected to the fact that the NLSM

originated as an effective theory of pion scattering, while the Galileon theories arise as

effective field theories in the decoupling limit of massive gravity. This also seems natural,

as the special Galileon theory is the square of the NLSM, using the KLT relation.

It seems evident that there are numerous aspects of CHY on a double cover that need

to be investigated.
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A Some matrix identities

In this section, we are going to provide some useful properties of the determinant of the

An matrix. Although we lack formal proofs for many of the relations, we have performed

numerous checks, up to ten points.

A.1 A new NLSM prescription from CHY

In this appendix, we formulate two propositions which have been employed to redefine the

n-point NLSM amplitude from the CHY framework.

Proposition 1. Let M be a 2n× 2n antisymmetric matrix. Then M satisfy the identity

Pf
[
(M)ikik

]
× Pf

[
(M)kjkj

]
= det

[
(M)ikkj

]
, (A.1)

up to an overall sign.

Proof. We start with the Desnanot-Jacobi identity [38], given by

det [M ] det
[
(M)ijij

]
= det

[
(M)ii

]
det
[
(M)jj

]
− det

[
(M)ij

]
det
[
(M)jj

]
. (A.2)

Now, let M be a 2n × 2n antisymmetric matrix, therefore, (M)kk is a (2n − 1) × (2n − 1)

antisymmetric matrix. Thus, from the identity in eq. (A.2), it is straightforward to see that

0 = det
[
(M)kiki

]
det
[
(M)kjkj

]
− det

[
(M)kikj

]
det
[
(M)kjki

]
, (A.3)

where we used the fact, det
[
(M)kk

]
= det

[
(M)kijkij

]
= 0. Since, [(M)kjki ] = [(M)kikj ]

t =

−[(M)kikj ], then {
Pf
[
(M)ikik

]
× Pf

[
(M)kjkj

]}2
=
{

det
[
(M)ikkj

]}2
, (A.4)

and proposition 1 has been proved.

Proposition 2. Let A be the antisymmetric matrix defined in eq. (2.6). When its size is

(2n+ 1)× (2n+ 1), then

det
[
(A)ikkj

]
= 0. (A.5)

Proof. Let us consider the 2n × 2n antisymmetric matrix given by (A)kk. Thus, from the

Desnanot-Jacobi identity in eq. (A.2), one has

det
[
(A)kk

]
× det

[
(A)kijkij

]
= −

{
det
[
(A)ikkj

]}2
, (A.6)

where we used, det
[
(A)kiki

]
= det

[
(A)kjkj

]
= 0. Under the support of the scattering equations,

Sa = 0, and the on-shell conditions, k2
a = 0, it is simple to show that the A matrix has

co-rank 2, therefore, det
[
(A)kk

]
= 0. This implies that, det

[
(A)ikkj

]
= 0, and the proof is

completed.
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A.2 Off-shell determinant properties

In this appendix we give some properties of the determinant when there is an off-shell

particle. These properties involve the matrices, An and An|Pi→ 1√
2
εi

.

This is very important to remark that those properties are supported on the solution

of the scattering equations, and, although we do not have a formal proof, they have been

checked up to ten points.

Let us consider n-particles with momenta, (P1, P2, P3, k4, . . . , kn), where the first three

are off-shell, i.e. P 2
i 6= 0, and the momentum conservation condition is satisfied, P1 + P2 +

P3 + k4 · · ·+ kn = 0. Additionally, the three off-shell punctures are fixed, σP1 = c1, σP2 =

c2, σP3 = c3, ci ∈ C, where c1 6= c2 6= c3. Thus, the “n − 3” scattering equations are

given by

Sa =
2 ka · P1

σaP1

+
2 ka · P2

σaP2

+
2 ka · P3

σaP3

+

n∑
b=4
a 6=b

2 ka · kb
σab

= 0, a = 4, . . . , n. (A.7)

Properties. Under the support of the scattering equations and using the above setup,

we have the following properties

I. Let n an odd number, n = 2m+ 1, then

det
[
(An)P1

P2

]
= (P 2

1 − P 2
2 − P 2

3 )× (−1)

σP2 P3

det
[
(An)P1P2

P2P3

]
. (A.8)

Notice that if all particles are on-shell, P 2
i = 0, the right hand side vanishes trivially

by the overall factor, (P 2
1 − P 2

2 − P 2
3 ).

When the momentum Pµ1 is replaced by an off-shell polarization vector, Pµ1 →
1√
2
εµ1 , (ε1 · P1 6= 0), the identity keeps the same form, namely

det
[
(An)P1

P2

]∣∣∣
Pµ1→

1√
2
εµ1

= (P 2
1 − P 2

2 − P 2
3 )× (−1)

σP2P3

det
[
(An)P1P2

P2P3

]∣∣∣
Pµ1→

1√
2
εµ1

. (A.9)

This identity is no longer satisfied if there are two off-shell polarization vectors.

II. Let n an even number, n = 2m, then

(−1)

σP1P2

det
[
(An)P1

P2

]
= −(P 2

1 + P 2
2 + P 2

3 )× 1

σP1P2 σP2P3

det
[
(An)P1P2

P2P3

]
= −(P 2

1 + P 2
2 + P 2

3 )× (−1)

σP1P2 σP2P1

det
[
(An)P1P2

P2P1

]
. (A.10)

If all particles are on-shell, P 2
i = 0, the right hand side vanishes trivially by the

overall factor, (P 2
1 + P 2

2 + P 2
3 ).

When the momentum Pµ1 is replaced by an off-shell polarization vector, Pµ1 →
1√
2
εµ1 , (ε1 · P1 6= 0), then, eq. (A.10) is no longer an identity. Instead, we have a new

identity given by

(−1)

σP1 P2

det
[
(An)P1

P2

]∣∣∣
Pµ1→

1√
2
εµ1

=
1

σP1 P3

det
[
(An)P1

P3

]∣∣∣
Pµ1→

1√
2
εµ1

. (A.11)

If there are two off-shell polarization vectors, then, this equality is no longer true.
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III. Let n an odd number, n = 2m+1, and let us consider the particles P2 and P3 on-shell

(P 2
2 = P 2

3 = 0). Then, we have the following identities

1

σP1 P3

det
[
(An)P1

P1

]
=

(−1)

σP2 P3

det
[
(An)P1

P2

]
, (A.12)

det
[
(An)P1

P1

]
=

[
P 2

1 ×
1

σP2 P3

]2

det
[
(An)P1P2P3

P1P3P3

]
. (A.13)

B Six-point computations

In this section we are going to explicitly calculate the six-point NLSM amplitudes A′6(I(123)),

A′6(I(134)) and A6(I(13)), where the two first are defined with the new integrand prescription,

while the third is defined with the standard integrand. We will calculate some of the cut-

contributions in detail, with the hope that the reader becomes more familiar with the double

cover formalism. The rest of the cut-contributions can be computed in a similar way.

B.1 A′6(III(123))

Let us consider the six-point NLSM amplitude, A6(1, 2, 3, 4, 5, 6), with the gauge fixing,

(pqr|m) = (123|4), and the reduced matrix [An]12
23 (i.e. (ijk) = (123)). Applying rule-I, this

amplitude has the following contributions

A′6(I(123)) = 6

5 4

3

21

cut - 1

+
6

5 4

3

21

cut - 2

+ 6

5 4

3

21

cut - 3

+ 6

5 4

3

21

cut - 4

. (B.1)

We will compute in detail the first contribution, which we call cut-1. The other cuts

can be evaluated using the same techniques.

From the integration rules, cut-1 is evaluated as

6

5 4

3

21

cut - 1

=
∑
M

A′3(1, 2, PM3:6)×A(P12 3)
5 (PM12 , 3, 4, 5, 6)

s3:6
. (B.2)

The three-point amplitude was already computed in eq. (6.2). We remind ourselves that

the notation PM3:6 means that the off-shell momentum, Pµ3:6, must be replacement by the

polarization vector, Pµ3:6 → 1√
2
εM µ
3:6 . More precisely, the three-point amplitude becomes

A′3(1, 2, PM3:6) =
√

2 (εM3:6 · k1) . (B.3)

Before computing the five-point amplitude in eq. (B.2), it is useful to use the identity,

A
(P12 3)
5 (PM12 , 3, 4, 5, 6) = P 2

12 × A′5(PM12 , 3, 4, 5, 6). Thus, by applying the integration rules
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for A′5(PM12 , 3, 4, 5, 6) one has

A′5(PM12 , 3, 4, 5, 6) =

∫
dµΛ

5
6

5 4

3

P12P
ϵ M

=
∑
N

{
A′3(PM12 , 3, P

N
4:6)×A(P1:3 4)

4 (PN1:3, 4, 5, 6)

s4:6
+

A
(P12P34)
4 (PM12 , P

N
34 , 5, 6)×A′3(PN5:2, 3, 4)

s56P12

+
A′4(PM12 , 3, P

N
45 , 6)×A(P6:3 4)

3 (PN6:3, 4, 5)

s45

}
,

(B.4)

with
∑

N ε
N µ
i εN ν

j = ηµν . From the building blocks in eqs. (6.2) and (6.3), the above

three-point amplitudes are straightforward to compute. We find that

A′3(PM12 , 3, P
N
4:6) = εM12 ·εN4:6, A′3(PN5:2, 3, 4) =

√
2 εN5:2·k4, A

(P6:3 4)
3 (PN6:3, 4, 5) =

√
2 s45 (εN6:3·k5).

(B.5)

Next, using the same procedure as in eq. (7.8), we evaluate the four-point graph, A′4(PM12 ,

3, PN45 , 6), arriving at

A′4(PM12 , 3, P
N
45 , 6) = 2(εM12 · k6) (εN45 · k6)

(
1

s6P45

+
1

s6P12

)
. (B.6)

On the other hand, in order to avoid singular cuts when applying the integration rules over

A
(P1:3 4)
4 (PN1:3, 4, 5, 6), we employ the identity, A

(P1:3 4)
4 (PN1:3, 4, 5, 6) = A

(P1:3 5)
4 (PN1:3, 4, 5, 6).

Thus,

A
(P1:3 5)
4 (PN1:3, 4, 5, 6) =

∫
dµΛ

4

P1:3 4

56

Pϵ N

=

cut - 1

P1:3 4

56

Pϵ N

+

cut - 2

P1:3
4

5
6

Pϵ N

+

cut - 3

P1:3
4

56

Pϵ N

= −
√

2 s46(εN1:3 · k4)−
√

2 s46 s45 (εN1:3 · k6)

s6P1:3

−
√

2 s46 (εN1:3 · k5), (B.7)

where we again have used the three-point building blocks in eqs. (6.2) and (6.3). Lastly,

since for the amplitude, A
(P12 P34)
4 (PM12 , P

N
34 , 5, 6), the above identity is no longer valid,

namely7 A
(P12 P34)
4 (PM12 , P

N
34 , 5, 6) 6= A

(P12 5)
4 (PM12 , P

N
34 , 5, 6), we make use of the BCJ rela-

tion [6, 9], s65 PT(5, 6, P12, P34) + s6P125 PT(5, P12, 6, P34) = 0. From this we obtain the

equality A
(P12 P34)
4 (PM12 , P

N
34 , 5, 6) =

(
s6P34
s56

)
× A(P12 P34)

4 (PM12 , 6, P
N
34 , 5). Now, applying the

integration rules, one has

A
(P12 P34)
4 (PM12 , P

N
34 , 5, 6) =

(
s6P34

s56

)
×
∫
dµΛ

4

P12

P34

6Pϵ M

Pϵ N5

=

P12

P34

6Pϵ M

Pϵ N5

cut - 1

+

P12

P34

6
Pϵ M

Pϵ N

5

cut - 2

+

P12

P34

6
Pϵ M

Pϵ N

5

cut - 3

= −2 s6P34 (εM12 ·k6) (εN34·k5)

s6P12

−2 (εM12 ·k5) (εN34·k6)−s6P34(εM12 ·εN34).

(B.8)

7This is because there is more than one off-shell polarization vector.
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Utilizing the results obtained in eqs. (B.5) to (B.8) , it is straightforward to check the

five-point amplitude, A
(P12 3)
5 (PM12 , 3, 4, 5, 6), is given by

A
(P12 3)
5 (PM12 , 3, 4, 5, 6) = −s12

√
2

{
s46

s4:6

[
(εM12 ·k4)+

s45(εM12 ·k6)

s6P1:3

+(εM12 ·k5)

]
+
s6P34

s56P12

[
s45 (εM12 ·k6)

s6P12

+
s46 (εM12 ·k5)

s6P34

+(εM12 ·k4)

]
−s56 (εM12 ·k6)

[
1

s6P45

+
1

s6P12

]}
,

(B.9)

and therefore cut-1 in eq. (B.2) is given by

6

5 4

3

21

cut - 1

=
∑
M

A′3(1, 2, PM3:6)×A(P12 3)
5 (PM12 , 3, 4, 5, 6)

s3:6
= −

{
s46

s4:6

[
s14 +

s45s16

s6P1:3

+ s15

]

+
s6P34

s56P12

[
s45 s16

s6P12

+
s46 s15

s6P34

+ s14

]
− s56 s16

[
1

s6P45

+
1

s6P12

]}
. (B.10)

The other contributions, cut-2,3,4, are calculated in a similar fashion. We find that

6

5 4

3

21

cut - 2

=
∑
M

A′5(1, 2, PM34 , 5, 6)×A(P5:2 3)
3 (PM5:2, 3, 4)

s34
= −

{
s15

s5:1

[
s14 +

s45s16

s5P2:4

+ s46

]

+
s5P12

s56P34

[
s45 s16

s5P34

+
s46 s15

s5P12

+ s14

]
− s56 s45

[
1

s5P16

+
1

s5P34

]}
, (B.11)

6

5 4

3

21

cut - 3

=
∑
M

A′3(PM4:1, 2, 3)×A(1P23)
5 (1, PM23 , 4, 5, 6)

s4:1
= −

{
s46

s4:6

[
s34 +

s45s36

s6P1:3

+ s35

]

−s56 s36

s6P45

+
s6P2:4 s34

s5:1

}
, (B.12)

6

5 4

3

21

cut - 4

=
∑
M

A′4(1, 2, PM3:5, 6)×A(P6:2 3)
4 (PM6:2, 3, 4, 5)

s3:5
= −s16 s35

s3:5
×

(
1

s16
+

1

s6P3:5

)
×
(
s36 +

s34 s56

s5P6:2

+ s46

)
. (B.13)
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B.2 A′6(III(134))

In this section, we just write down the results found for the cut-contributions obtained in

eq. (7.26). Using the same method presented above, it is straightforward to arrive

6

5 4

3

21

cut - 1

=
∑
M

A
(1P3:6)
3 (1, 2, PM3:6)×A′5(PM12 , 3, 4, 5, 6)

s3:6
=
s46

s4:6

[
s24 +

s45s26

s6P1:3

+ s25

]

+
s6P34

s56P12

[
s45 s26

s6P12

+
s46 s25

s6P34

+ s24

]
− s56 s26

[
1

s6P45

+
1

s6P12

]
, (B.14)

6

5 4

3

21

cut - 2

=
∑
M

A
(1P34)
5 (1, 2, PM34 , 5, 6)×A′3(PM5:2, 3, 4)

s34
= − s26 s56 s45

s5P34 s6P3:5

+
s24 s6P2:4

s5:1

+
1

sP3456

[
s25 s46 +

s26 s6P34 s45

s6P12

+ s24 s6P34

]
, (B.15)

6

5 4

3

21

cut - 3

=
A3(3, P4:1, 2)×A′5(1, P23, 4, 5, 6)

s4:1
= 0, (B.16)

6

5 4

3

21

cut - 4

=
∑
M

A
(1P3:5)
4 (1, 2, PM3:5, 6)×A′4(PM6:2, 3, 4, 5)

s3:5
= −s26 s45

s3:5
×

(
1

s45
+

1

s5P6:2

)
×
(
s15 +

s12 s56

s6P3:5

+ s25

)
. (B.17)

B.3 A6(III(13))

Now, we focus on applying the integration rules for A6(I(13)). We recall that this notation

means that the reduced Pfaffian is given by −PTT (1, 3)×det[(AΛ
6 )13

13]. In addition, such as

in the previous examples, we fix the gauge by (pqr|m) = (123|4). Thus, from the eq. (7.19),

we have that

A6(I(13)) =

∫
dµΛ

6

6

5

4

3

2

1

=

6

5

4

3

2

1

cut-1

+

6

5

4

3

2

1

cut - 2

+

6

5

4

3

2

1

cut - 3

.
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Applying the integration rules, cut-1 is split into

6

5

4

3

2

1

cut-1

=

∫
dµCHY

4

21

P3:56

×
(

1

s345

)
×
∫
dµCHY

4

5 4

3P6:2

=
A4(1, 2,P3:5, 6)×A4(P6:2,3, 4, 5)

s3:5
=
s26 s35

s3:5
. (B.18)

On the last equality we used the identity, A4(P6:2,3, 4, 5) = A4(P6:2, 3,4, 5) (in order to

avoid singular cuts), and the same procedure as in eq. (7.2). This identity is supported

over the off-shell Pfaffian properties given in appendix A.2.

The following contribution is the cut-2 (strange-cut), which, by the integration rules,

is broken as

6

5

4

3

2

1

cut - 2

=

∫
dµCHY

5

P13
6

5

4
2

×
(

1

s4:6,2

)
×

P4:6,2

13

. (B.19)

Notice that on the first graph the our method can not be employed. Nevertheless, similar

to Yang-Mills theory [21], this strange-cut can be rewritten in the following way

∫
dµCHY

5

P13
6

5

4
2

×

P4:6,2

13

= (−1)

∫
dµCHY

5

P13
6

5

4
2

×

P4:6,2

13

= (−1)A′5(P13, 2, 4, 5, 6)×A′3(1, 3, P4:6,2), (B.20)

where we used the identities formulated in appendix A.2. Therefore, this cut turns into

6

5

4

3

2

1

cut - 2

= (−1)
A′5(P13, 2, 4, 5, 6)×A′3(1, 3, P4:6,2)

s4:6,2
= s13

[
s46

s456
+
s26 + s46

s56P13

]
. (B.21)

The five-point amplitude, A′5(P13, 2, 4, 5, 6), was already calculated in eq. (B.4) and the

three-point function is given in eq. (6.2).

Lastly, the strange cut-3 is

6

5

4

3

2

1

cut - 3

= (−1)
A′3(P5:1,3, 2, 4)×A′5(1, 3, P24, 5, 6)

s24
= s24

[
s26+s46

s56P24

+
s26+s36+s46

s561

]
.

(B.22)
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B.4 Longitudinal contributions

In this section, we consider just the longitudinal degrees of freedom of all cut-contributions

obtained from A′6(I(123)) and A′6(I(134)). Those results are used in section 7.3.

First, we begin with the cut-structure given in eq. (B.1) for A′6(I(123)). We replace

εM → εL, and use eq. (7.28). The longitudinal contributions become∑
L

A′3(1, 2, PL3:6)×A(P123)
5 (PL12, 3, 4, 5, 6)

s3:6
=
s1P3:6

2 s12
×
{
s46

s4:6

[
sP12P45 +

s45sP126

s6P1:3

]

+
s6P34

s56P12

[
s45 sP126

s6P12

+
s46 sP125

s6P34

+ sP124

]
−s56 sP126

[
1

s6P45

+
1

s6P12

]}
. (B.23)

∑
L

A′5(1, 2, PL34, 5, 6)×A(P5:23)
3 (PL5:2, 3, 4)

s34
=
s4P5:2

2 s34
×
{
s15

s5:1

[
sP34P16 +

sP345s16

s5P2:4

]

+
s5P12

s56P34

[
sP345 s16

s5P34

+
sP346 s15

s5P12

+ s1P34

]
−s56 s5P34

[
1

s5P16

+
1

s5P34

]}
, (B.24)

∑
L

A′3(PL4:1, 2, 3)×A(1P23)
5 (1, PL23, 4, 5, 6)

s4:1
=
s3P4:1

2 s23
×
{
s46

s4:6

[
sP23P45 +

s45sP236

s6P1:3

]

−s56 sP236

s6P45

+
s6P2:4 sP234

s5:1

}
, (B.25)

∑
L

A′4(1, 2, PL3:5, 6)×A(P6:23)
4 (PL6:2, 3, 4, 5)

s3:5
=
s16 s6P3:5

2 s3:5
×
(

1

s16
+

1

s6P3:5

)
×

s35

s3:5
×
(
sP6:2P34 +

s34 s5P6:2

s5P6:2

)
. (B.26)

To end, we carry out the longitudinal contributions for all cut-contributions of

A′6(I(134)),∑
L

A
(1P3:6)
3 (1, 2, PL3:6)×A′5(PL12, 3, 4, 5, 6)

s3:6
= −s2P3:6

2 s12
×
{
s46

s4:6

[
sP12P45

+
s45sP126

s6P1:3

]

+
s6P34

s56P12

[
s45 sP126

s6P12

+
s46 sP125

s6P34

+sP124

]
−s56 sP126

[
1

s6P45

+
1

s6P12

]}
. (B.27)

∑
L

A
(1P34)
5 (1, 2, PL34, 5, 6)×A′3(PL5:2, 3, 4)

s34
= −s4P5:2

2 s34
×
{
s26 s56 sP345

s5P34
s6P3:5

+
s2P34 s6P2:4

s5:1

+
1

sP3456

[
s25 sP346+

s26 s6P34
s5P34

s6P12

+s2P34
s6P34

]}
,

(B.28)
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∑
L

A
(1P3:5)
4 (1, 2, PL3:5, 6)×A′4(PL6:2, 3, 4, 5)

s3:5
=
s5P6:2 s45

s3:5
×
(

1

s45
+

1

s5P6:2

)
×

s26

s3:5
×
(
s1P3:5

+
s12 sP3:56

s6P3:5

+s2P3:5

)
. (B.29)

A3(3, P4:1, 2)×A′5(1, P23, 4, 5, 6)

s4:1
= 0, (B.30)
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