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We obtain novel factorization identities for nonlinear sigma model amplitudes using a new integrand in
the Cachazo-He-Yuan double-cover prescription. We find that it is possible to write very compact relations
using only longitudinal degrees of freedom. We discuss implications for on shell recursion.
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I. INTRODUCTION

Cachazo, He and Yuan (CHY) invented in Ref. [1] a new
method for calculating S-matrix elements. This formalism
has numerous applications and many interesting connec-
tions, see for instance Refs. [2—4]. The CHY construction
was formally proven by Dolan and Goddard in Ref. [5].

The main ingredients are the n-point scattering equations

0=S,= Z Jab

SabEZku’kiw (1)
b=1.beta Cab

Zab=Za —Zb>

where z,, are auxiliary variables on the Riemann sphere and
k, are momenta. In the CHY formalism one has to integrate
over a contour containing the (n —3)! independent sol-
utions of the scattering equations.

As computations in the CHY formalism grow factorially
in complexity with n, integration rules have been developed
at tree [6-9] and loop level [10], so that analytical results
for amplitudes can be derived without solving the scattering
equations explicitly.

Recently, the CHY formalism was reformulated by
one of us in the context of a double cover [11] (called
the “A-formalism” in Refs. [11,12]). Here, the basic
variables are elements of CP2, and not CP! as in the
original CHY formalism. One advantage of the extra
machinery is that amplitudes in the double-cover formu-
lation naturally factorize into smaller CcPp! pieces, and this
is a useful laboratory for deriving new amplitude identities.

We will start by reviewing the CHY formalism for the
nonlinear sigma model (NLSM) and provide an alternative
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formulation that employs a new integrand. Next, we will
show how the double-cover formalism naturally factorizes
this new CHY formulation in a surprising way.

II. A NEW CHY INTEGRAND

As explained in Ref. [13], the flavor-ordered partial
U(N) nonlinear sigma model amplitude in the scattering
equation framework is given by the contour integral

Aa(a) = [ dupt (@),

du, = (Ziijkai)z H

a=1

a#{i.j.k}

dz

_“’ 2
S )
where (@) = (a(1),...,a(n)) denotes a partial ordering.
The integrand is given by

H,(a) = PT(a) x (PF'A)2, (3)
1
PT(a) = : (4)
Za(l)a(2)%a(2)a(3) " " Za(n)a(l)
() s
PPA = """ pf[(A)]]. (5)
Zij

Here PT(a) and Pf’'A are the Parke-Taylor (PT) factor and
the reduced Pfaffian of matrix A, respectively. The n x n
antisymmetric matrix, A, is defined as,

Aabzsib for a # b,

and A, =0 fora=>b. (6)
Zab

i

In general, (A) i
removing the rows, {iy, ..., ip}, and columns, {j, ...,jp},

'j”p denotes the reduced matrix obtained by
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from A. Note that when the number of external particles 7 is
odd, Pf/A =0, and A,(a) vanishes.
Using Eq. (5), we have

<_1)i+j+m+p

(PI'A)? = PE((A)F] x PEI(A)R]. (7)

Zijzmp

With the choice {i, j} = {m, p}, this product of Pfaffians
becomes a determinant,

(P'A)? = —PT(m. p) det[(A)mp]. (8)

We will now discuss the following new matrix identities.
On the support of the scattering equations and the massless
condition, {S, = 0,k = 0}, we find when m # p # q

PE[(A)mp] x PE[(A)pq] = det[(A)pq]. ©)
det[(A)pd] =0 if nodd. (10)

A proof of these identities will be pr0v1ded in Ref. [14].
Using the non-anti-symmetric matrix, (A)7, we define the
objects (with i < j < k)

A = [ awrria) e, an

ZijZjk
_1)i+j

@) = [ anpri@ S aeqay. a2
Zij
Note that in Egs. (11) and (12) we have reduced the A
matrix with the indices {i,j, k} associated with the
Faddeev-Popov determinant. This gauge choice will be
convenient later. We now have the following equality,
Ay(a) = A, (@), (13)
when all particles are on shell. When there are off shell
particles, the identity is true only if the number of particles
is even. When the number of particles is odd and there are
off shell particles, one has A,(a) =0 while A} (a) # 0.
Since the A matrix has the corank 2 on the support
of the scattering equations and the massless condition,

{5, =0.k2 =0}, A
when there are off shell particles the amplitude A\”(a)
is no longer zero.

These observations will be crucial in obtaining the new
factorization relations.

(a) vanishes trivially. However,

III. THE DOUBLE-COVER REPRESENTATION

In the double-cover version of the CHY construction, the
n-point amplitude is given as a contour integral on
the double-covered Riemann sphere with n punctures.

The pairs (o1,y1),(62,¥2), ..., (6,,¥,) provide the new
set of doubled variables restricted to the curves

0=C,=y2-02+A* fora=1,...,n. (14)
A translation table has been worked out in detail in
Ref. [11]. The double-cover formulation of the NLSM is
given by the integral

—1)A(ijk)A(ijk
tnfa) = [y TR 7, ),
1 dA {~ yadya “ do,
g—ffl‘[ < [T <" (15)
a d#{i.:j.]k.r d

t(a.b)=

1 Va +yb+6ab> &
, St= sqapt(a,b),
26ab< Ya ¢ ; ¢
#a

A(ijk) = (2(i.j)t(j.k)z(k. 1)~

A(ijk|r) =o0;A(jkr) — o0, A(ijk) + o, A(rif) — o A(kri).

(16)
The I' contour is defined by the 2n — 3 equations

A=0. Sy.y)=0. C,=0. (17)
ford# {i,j,k,r} anda=1,...,n

The integrand is given by

T,(a) = —PT?( )H “PTTm p)det[(AMmP], (18)

where (yo), =y, + 6,. To obtain the kinematic matrix and
the Parke-Taylor factors we need to do the following
replacements

A—->A* and PT-PT" forz, —» T, (19)

PT — PT* for z,, — 7(a,b), (20)

with T, = W Analogous to Eq. (11), we can now

yo),
write down a new form for the integrand

T (o) = PT(a) [ [ 220 ()47, T det{ (AN, (21)

al Ya

where {i, j, k} are the same labels as in A(ijk)A(ijk|r).
For more details on the double-cover prescription, see
Refs. [11,14,15].
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IV. FACTORIZATION

Let us start by considering the four-point amplitude,
A)(1,2,3,4), with the gauge fixing (ijk|r) = (123]4).
We will denote sums of cyclically-consecutive external
momenta (modulo the total number of external momenta)
by Pi.j=k;+ ki + -+ ki +kj. For expressions
involving only two (not necessarily consecutive) momenta,
we are using the shorthand notation P;; = k; +k;. We
focus on the configuration where the sets of punctures
(01,0,) and (03, 04) are respectably on the upper and the
lower sheet of the curves

( +\/0'1 — A2 0'1) (Y2—+\/0'2 A2 0'2)
(Y3:—\/0'§—A2,03), (y4=—\/ai—A2,a4). (22)

Expanding all elements in Aj(1,2,3,4) around A = 0, we
obtain (to leading order)

A2 1 1
2% (01202p,,0p,,1) (0p,,303404p,,)

A(123)A(123]4) 12 25 2( 1 )
-  ~ 7 = — (0170 o R
SZ 34 A4 ( 12 2P34 P341) S34

X (6P1236340'4P12)2v (23)

PT?(1,2,3.4)[}; =

’

::4;

T12T23det[(AA>é%]lézi

a=1 ya
A_2 1 sy 1 (= 1)534 (24)
22 01202p,, 0p,,1 0P )3 0'34641012

where we have introduced the new fixed punctures
op,, = op,, = 0. Since we want to arrive at factorization
identity for nonlinear sigma model amplitudes (inspired by
previous work for Yang-Mills theories, see Ref. [15]) we
are now going to introduce polarizations associated with
the punctures, 6p,, = op, = 0, i.e., €} and €}}. Thus,

S14 = 2'(kl : k4) = z(kl;t Xt x k4b)
= _(V2ki - ell) x (V2ky - €)). (25)
M

employing,
Zeﬁwﬂey” =n". (26)
M

After separating the labels {1,2} and {3,4}, it is simple to
rearrange Eq. (24) as a product of two reduced determi-
nants,

1 (V2k - ) _ 1 det |:\/§kl ‘613‘51]

01202p,, Opyl 01202p,, Opy,l
M Vokyely sy
(—1) S34(\/§k4 . €12> o (—1) det 03P, O34
- ’
OPp3 03404p,, OP;y3 V2kyelh 0
O4pyy
therefore
1 (
yG)a AVI2711.2
H T1,To3 det[(A) 31134
w=1 Ya
A2 \/ikl . €M
=——5X E x det | —1—34
2 7 C1202p,, Opy1
( 1) \/§k3~e’1"£ S
- o3p 034
x —=det le . (27)
0p,3 \/zk4'€12 0
04pyy

The new matrices in Eq. (27) can be obtained from the
A matrix by replacing the off shell momenta, P34 and P,,
by their corresponding off shell polarization vectors,

2k, - €M 1
det[(A)13 edet[ﬁ] for Py, » —¢e¥, (28
[(A)5,,] o SV (28)
\/§k3‘€'1"; S
det(A)72] > det| 2 | for Py e, (29)
3 ket 0 12 Vo

Gapyy

where the A matrix in Eq. (28) is the 3 x 3 matrix related
with the punctures (oy,0,.0p,,), while the matrix in

Eq. (29) corresponds to the punctures (op,,,03,04).
Using the measure, duf = 242, we now perform the A
integral and the amplitude becomes

AL (1.2.3.4))33

1 A45(1,2,P5)) xA<P'23)(P§2,3 4) _su
2§ 5 (30)

S12

where the notation PSM means one must make the replace-
ment, P; — \/Z M and use Eq. (26). The overall factor 1/2
cancels out after summing over mirrored configurations, i.e.,
A)(1,2,3, 4) +A)(1,2,3, 4)|1 , = S14. Following the
integration rules in Ref. [15], we also have the contribution
(up to summing over mirrored configurations)

A(1.2.3.4)3;

_1ZA(1P23>(1 P§3,4)XA/3(PZA14,2,3)_S12 (31)

2 i S14 2
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Thus, the final result is

1(1,2,P5) x ALY (P 3,4
Ag(1,2,3,4)22[ 5 S4) X (P, )
— S12
+A(1P22>(1 p§3,4)xA’3(PZﬁ14,2,3) _
= =913
S14
(32)

The four-point amplitude is factorized in terms of three-
point functions. The general three-point functions where
some or all particles can be off shell, are

AP, Py.P.) = spp, =—(P2— P} + P2), (33)
A(P Pb)(PavPb»P )_stP(,SPL.Pa
= (P2=P}+P})(Pi—P}+P?). (34)

Since the nonlinear sigma model is a scalar theory it is an
interesting proposition to consider longitudinal degrees of
freedom only

kl/
Z Lu Lu _ ) (35)
j
Doing so we arrive at the equation
A4(1,2,3,4) 22[ A4(1,2,P5) x AL (P 3,4)
S12
. 1P oL
+(_1)3A/3(P41’2’3) XAg 23)(171)2314)
S14
= =513 (36)

Surprisingly, it is possible to generalize this equation to
higher point amplitudes. Here the overall sign of each
contribution depends of the number of points of the
subamplitudes. In Ref. [14], we will give more details on
this phenomenon.

V. NEW RELATIONS

As will be shown in great detail elsewhere [14], using the
double-cover prescription for a partial nonlinear sigma
model amplitude one is led to the following general
formula where an n-point amplitude is factorized into a
product of two (single-cover) lower-point amplitudes:

A’,,(1,2,3 4,...n)

Pi1:23 ¢ .
B Z Al (12, P i1, A2 (pel 3

i=4.M P12+1 2
ALy 2.3) x AV (1,P5y 4, ..n)

Here n is an even integer and we have used Eq. (26). The
above expression is valid using the Mobius and scale-
invariance gauge choice (ijk|r) = (123|4).

From the decomposition obtained by the double-cover
method in Eq. (37), we are able to write down a new
factorization relation, where only longitudinal degrees of
freedom contribute,

AL(1,2,3,4,....n)
_2{2(—1)1'-'
i=4,L

A (L2PS i1 n)x A3 pe 300

P12+1 2
AL(PS,.2.3)x APR) (1 PSh 4. n)
P2 ’
23

(38)

+> (=13

where Eq. (35) was used. We checked this formula up to ten
points.

Since the above factorization relation includes only
longitudinal contributions, we can rewrite it in a more
elegant form, involving only the A}, amplitudes. Using the
definitions given in Egs. (11)—(12) and under the gauge
fixing (ijk), with i < j < k, we have the following two
identities [14]

AP (P )= PAAL(L P, q=2m+1
AS}”(...,Pi,...):—PzA’( P...). q=2m. (39)

where P? # 0. In addition, Aflij ) satisfies the useful identities

Applying the identities Eqs. (39)—(40), it is straightforward
to obtain

A’(1234...n)

n— l+3 1 2P3 il +1,...n)XA;_I(Pi+1;2,3,...i)
_Z P2
i+1:2
A5 (Py.1,2,3) x Al _ (Py,4,...,n,1

2
P23
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where the factorization formula has been written in
terms of the generalized amplitude Aj,. Other gauge choices
will naturally with lead to alternative factorization
formulas.

A. BCFW recursion

It is interesting to analyze the new factorization identities
in comparison with expressions originating from the Britto-
Cachazo-Feng-Witten (BCFW) recursion [16]. We intro-
duce the momentum deformation

Ky(z) = K5+ z¢" K5(z) = K —zq¥.z € C, (42)

where ¢* satisfies k, - g = k3-q = g - g = 0. Deformed
momenta are conserved and on shell: k; + k,(z) + k3(z) +
ks + -+ k, = 0and k3(z) = k3(z) = 0. We consider the
general amplitude, A, (1, ..., n), where n is an even integer.
From Eq. (41) using Cauchy’s theorem we have

Ay(1,2, .0 n)
n/2
= — Z RCSP;:Z(Z):O |:A:1—2i+4(1’ 2, P312i—1’ 2l, ey I’l)
i=3

XAlzl'—z(Pzi:z,i e 20— 1)]
ZP%:’:Z(Z)
[A;(l,z,...,n)(z)}

Z

—Res,_, (43)

Only the even amplitudes, namely A’zq, contribute to the

physical residues. This is simple to understand as we have
the identity, Ay,(1,...,2q) = A5,(1,...,2¢g), so only sub-
amplitudes with an even number of particles produce
physical factorization channels. On the other hand, when
the number of particles is odd, the off shell (Pl.2 #0)
amplitude, A/2q+l (..., P;,...), is proportional to P?, since it
must vanish when all particles are on shell. So, the poles,
P35 i=3,....,24 1 and Py, are all spurious and the
subamplitudes with an odd number of particles only
contribute the boundary term at z = oo.

Finally, it is important to remark that after evaluating the
residues, P3,.,(z) =0, in Eq. (43), one obtains extra
nonphysical contributions, which cancel out combining
with terms associated with the residue at z = co. Therefore,
the effective boundary contribution is just given by the
subamplitudes with an odd number of particles

{A’n(l,Z,...,
Z

n)( z)] Effective

Res,_

n/2+1
— 3%[2 Al is(1,2, P35, 20— 1,...,n)
)

% Al _3(Pyi1:2.3,...,2i = 2)

2P3i15(2)
+Ag(P4:1,2,3)XA:ZEI(P23,4,...,I1,1) ‘ (44)
ZP23 z=00

VI. CONCLUSIONS

We have proposed a new CHY integrand for the U(N)
nonlinear sigma model. For this new integrand, the kinematic
matrix, (A);’k is no longer antisymmetric. We have found two
new factorization identities, Eqgs. (37) and (38). We have
written the second factorization formula in an elegant way,
which only involves the generalized amplitude, Aj. This
formula turns out to be surprisingly compact (we have checked
agreement of the soft limit of this formula with Ref. [17]).

This has implications for the BCFW recursion since the
two new factorization formulas can be split among even
and odd subamplitudes, e.g., Ay, x A5, and A} | X Aj,
respectively. Using this we are able to give a physical
meaning to the odd subamplitudes as boundary contribu-
tions under such recursions.

Work in progress [14] is going to present a new
recurrence relation and investigate its connection to
Berends-Giele [18-22] currents and Bern-Carrasco-
Johansson (BCJ) numerators [23-25]. Similar relations
for other effective field theories [13,17,22] are expected
and will be another focus.

Despite similarities between the three-point amplitudes
with the Feynman vertices obtained in Ref. [26], the
construction presented here is different. For example,
the numerators found in Eq. (32) are not reproduced by
the Feynman rules found in Ref. [26]. Understanding the
relationship between the formalisms would be interesting.
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