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A double-cover extension of the scattering equation formalism of Cachazo, He, and Yuan leads us to
conjecture covariant factorization formulas of n-particle scattering amplitudes in Yang-Mills theories.
Evidence is given that these factorization relations are related to Berends-Giele recursions through repeated
use of partial fraction identities involving linearized propagators.
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I. INTRODUCTION

The CHY formalism of scattering equations of Cachazo,
He, and Yuan provide an intriguing novel way of comput-
ing gauge and gravity S-matrix elements [1–3]. The n-point
scattering amplitudes are expressed here in terms of
integrals over auxiliary variables za on the Riemann sphere
that become localized on the set of solutions to the
scattering equations,

Sa ≡
Xn

b¼1;b≠a

sab
za − zb

¼ 0: ð1Þ

Here sab ¼ 2ka · kb are generalized Mandelstam variables,
and the index a labels the (ordered) external particles of
momenta ka. One remarkable feature of the CHY formal-
ism, and one which shows its fundamental nature, is that
it is dimension-agnostic. The defining integral over the
variables za is invariant under an SLð2;CÞ transformation

za →
Aza þ B
Cza þD

; AD − BC ¼ 1; ð2Þ

which needs to be fixed. Fixing three of the variables in
the standard manner, only (n − 3) variables za are left.
This precisely matches the (n − 3) independent scattering
equations after imposing overall momentum conservation.
The number of independent solutions ðn − 3Þ! is never-
theless huge, and finding all these solutions is computa-
tionally difficult even for moderate values of n. Summing
over these independent solutions can fortunately be done
more directly, through general integration rules developed

in Refs. [4,5]. A proof of the CHY formalism has been
provided by Dolan and Goddard in Ref. [6].
Recently, one of us [7] (see also Ref. [8]) showed how the

CHY formalism can be given a new formulation in which
the basic variables za live not on CP1 but on the complex
projective planeCP2. Dubbed the “Λ-formalism” in [7], here
we refer to it as CHYon a double cover. At first sight it may
seem to be a complication to extend the CHY formalism
in this manner. However, as we demonstrate in this paper,
the double-cover formalism adds a new ingredient to the
standard CHY formalism that is much more difficult to
extract in the single-cover formulation. Briefly stated, the
double-cover formalism naturally expresses the scattering
amplitude so that it is factorized into different channels. The
propagator that forms the bridge between two factorized
pieces arises as the link between two separate CP1 pieces,
thus intuitively explaining why the double cover naturally
expresses amplitudes in a factorized manner.
In many cases, the factorizations obtained in this way

correspond directly to all the physical channels. Interestingly,
there are instances where, unavoidably, the factorizations
proceed in a slightly different manner: Some physical
channels appear immediately, but others only resurface after
pole-canceling terms have rearranged the expressions.
We start with a brief review of the CHY formalism and

then give the corresponding expressions in the double-
cover formulation of Ref. [7]. Next, we describe how the
evaluation of amplitudes on a double cover produces
factorizations into different channels. Finally, we write
down an explicit factorization expression valid for n gluons
in any dimension and relate it to known techniques such as
on-shell and Berends-Giele recursions.

II. THE CHY CONSTRUCTION AND
A DOUBLE-COVER

Consider the scattering of n massless particles. The
scattering data will then be presented in terms of a set
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of n momentum vectors fkμ1; kμ2;…; kμng and n “wave
functions” that encode the spin degrees of freedom. For
Yang-Mills amplitudes the latter will correspond to the
polarization vectors fϵμ1; ϵμ2;…; ϵμng. Graviton scattering will
similarly be characterized by a set of polarization tensors or,
put more simply, as outer products of polarization vectors.
Let us introduce the compact notation of jijkjz indicating

the Vandermonde determinant of variables zi, zj, zk:

jijkjz ≡
Y
i<j

ðzj − ziÞ ¼

��������
1 zi z2i
1 zj z2j

1 zk z2k

��������
: ð3Þ

It is possible to show that for any rational function HðzÞ
which transforms as

HðzÞ → HðzÞ
Yn
a¼1

ðCza þDÞ4; ð4Þ

when

za →
Aza þ B
Cza þD

and AB − CD ¼ 1; ð5Þ

the contour integral [2]

Z Yn
a¼1;a≠fi;j;kg

dza
jijkjzjpqrjzQ

n
c¼1;c≠fp;q;rg ScðzÞ

HðzÞ ð6Þ

is independent of the choice of fixed punctures, fzi; zj; zkg,
and of equations eliminated, fSp; Sq; Srg.
The precise form of the integrand HðzÞ defines different

(color-ordered) theories. The simplest case is ϕ3 theory.
Let us define a “Parke-Taylor”-factor

PTð1; 2;…; nÞ≡ 1

ðz1 − z2Þðz2 − z3Þ � � � ðzn − z1Þ
: ð7Þ

Color-ordered ϕ3 amplitudes correspond to integrands with
such factors squared:

HðzÞ ¼ ½PTð1; 2;…; nÞ�2: ð8Þ

As shown inRefs. [9,10] (see also [11]), the basic building
blocks of other theories are products of one Parke-Taylor
factor with a shuffled Parke-Taylor factor (α indicating a
permutation):

HðzÞ ¼ PTð1; 2;…; nÞ × PTðαð1Þ;αð2Þ;…; αðnÞÞ: ð9Þ

Such a product of Parke-Taylor factors in the integrand thus
forms a basic skeleton for all other theories.

For Yang-Mills theory we have

HYM
n ¼ PTð1; 2;…; nÞ × Pf 0Ψn; ð10Þ

where

Pf 0Ψn ≡ ð−1Þiþj

zi − zj
Pf½ðΨnÞijij�: ð11Þ

The 2n × 2n matrix, Ψn, is defined as

Ψn ≡
�
A −CT

C B

�
; ð12Þ

with

Aab ≡
� α2ka · kb

za−zb

0
; Bab ≡

� ϵa · ϵb
za−zb

a ≠ b;

0 a ¼ b;
ð13Þ

and

Cab ≡
( αϵa · kb

za−zb
a ≠ b;

−
P

n
c¼1;c≠a

αϵa · kc
za−zc

a ¼ b:
ð14Þ

Notice the unusual normalization in the A and Cmatrices. If
we put α ¼ 1, we recover the CHY prescription as originally
defined. If instead we choose α ¼ ffiffiffi

2
p

, the normalization
matches with the color-ordered Feynman rules given by
Dixon in [12]. In what follows, α can take any value (it only
changes the overall normalization of the color-ordered
amplitudes, a convention), but we keep it arbitrary at this
point to facilitate a comparison with Feynman diagrams
based on color-ordered Feynman rules later in this paper.
The matrix ðΨnÞijij denotes the reduced matrix obtained by
removing the rows and columns i, j from Ψn, where
1 ≤ i < j ≤ n. For how to use the integration rules [5,13]
in the context of Yang-Mills theory, see [9–11].

A. The double cover

A double-cover version of the CHY construction was
recently developed by one of us in [7]. In this approach the
amplitudes are given as contour integrals on n-punctured
double-covered Riemann spheres. Restricted to the curves
0 ¼ Ca ≡ y2a − σ2a þ Λ2 for a ¼ 1;…; n, the pairs ðσ1; y1Þ;
ðσ2; y2Þ;…; ðσn; ynÞ provide the new set of doubled var-
iables. A translation table has been worked out in detail in
Ref. [7]. Specifically, one defines

τða;bÞ ≡ 1

2ðσa − σbÞ
�
ya þ yb þ σa − σb

ya

�
ð15Þ

and

ΔðpqrÞ ≡ ðτðp;qÞτðq;rÞτðr;pÞÞ−1 ð16Þ
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and simultaneously imposes scattering equations in the
form (momentum conservation

P
ka ¼ 0 is implicitly used

throughout)

Sτa ≡
Xn
b¼1
b≠a

sabτða;bÞ ¼ 0; ð17Þ

where a ¼ 1;…; n. Amplitudes are then derived from the
following expression:

AΛ
n ¼

Z
Γ
dμΛn ×

Inðσ; yÞ
Sτm

; ð18Þ

where the measure dμΛn is defined as

dμΛn ≡ 1

VolðGLð2;CÞÞ ×
dΛ
Λ

Yn
a¼1

yadyadσa
Ca

ΔðpqrÞQ
d≠p;q;r;mS

τ
d
;

ð19Þ
with the Γ contour being defined by the equations�Λ ¼ 0

Sτd ¼ 0
for d ≠ fp; q; r; mg; C1 ¼ 0;…;Cn ¼ 0:

ð20Þ
This rewriting of the amplitude in terms of this contour Γ,
which does not encircle the scattering equation Sτm, follows
from the global residue theorem. Note that the integrand
now includes a scale Λ. In order to fix this larger GLð2;CÞ
symmetry, we gauge-fix four σa’s. Then the measure must
be multiplied by the Faddeev-Popov determinant

ΔðpqrjmÞ ≡ σpΔðqrmÞ − σmΔðpqrÞ þ σrΔðmpqÞ − σqΔðrmpÞ:

ð21Þ
Therefore, dμΛn becomes

dμΛn ¼ 1

22
dΛ
Λ

Yn
a¼1

yadya
Ca

Y
d≠p;q;r;m

dσd
Sτd

× ΔðpqrjmÞΔðpqrÞ;

ð22Þ
which has been explained in detail in [7,14].
As in the original CHYapproach, the precise form of the

integrand Inðσ; yÞ defines the theory. For example, color-
ordered ϕ3 theory corresponds to the integrand

In ¼ ½PTτð1; 2;…nÞ�2; ð23Þ
where

PTτð1; 2;…nÞ≡ τð1;2Þτð2;3Þ � � � τðn;1Þ: ð24Þ
Note the τ’s are neither antisymmetric nor symmetric; the
precise definition as given above is correct. Similarly, other
theories correspond to products of such modified Parke-
Taylor factors with additional expressions, much like in the

original CHY formalism. Again, the integrands for these
other theories can be broken down to products of shuffled
Parke-Taylor expressions.

III. THE YANG-MILLS THEORY IN
THE DOUBLE-COVER

PRESCRIPTION

Since τða;bÞ ≠ −τðb;aÞ, it is not immediately obvious
how to define the double-cover analog of the reduced
Pfaffian for pure Yang-Mills theory. In order to obtain the
double-cover version of the Ψn matrix, we write [we define
ðyσÞa ≡ ya þ σa]

τða;bÞ ¼
ðyσÞa
ya

× Tab ≡ ðyσÞa
ya

×
1

ðyσÞa − ðyσÞb
; ð25Þ

on the support, Ca ¼ Cb ¼ 0, where clearly Tab ¼ −Tba.
Since Tab is antisymmetric, we establish the single- and
double-cover identification, 1

σab
↔ Tab, so the double-cover

matrix ΨΛ
n is defined as ΨΛ

n ≡ Ψnj 1
σab

→Tab
. Notice that it is

straightforward to rewrite the ϕ3 integrand in terms of Tab,
namely,

Iϕ3

n ðαjβÞ ¼ PTτðα1;…αnÞ ×
Yn
a¼1

ðyσÞa
ya

× PTTðβ1;…βnÞ;

with

PTTðβ1; β2;…βnÞ≡ Tβ1β2Tβ2β3 � � �Tβnβ1 : ð26Þ

Following the CHYprogram developed in [3], the double-
cover representation of the ordered Yang-Mills amplitude
is obtained by the replacement PTTðβ1; β2;…βnÞ →
ð−1ÞiþjTijPf½ðΨΛ

n Þijij�, i.e.,

IYM
n ðαÞ ¼ PTτðα1;…αnÞ × Pf 0ΨΛ

n ; ð27Þ

with

Pf 0ΨΛ
n ≡Yn

a¼1

ðyσÞa
ya

× ð−1ÞiþjTijPf½ðΨΛ
n Þijij�; ð28Þ

where the ðΨΛ
n Þijij matrix is given by removing the rows and

columns i, j from ΨΛ
n , with 1 ≤ i < j ≤ n. Therefore, the

pure Yang-Mills amplitude at tree level in the double-cover
language is given by the expression

AnðαÞ ¼
Z
Γ
dμΛn

ð−1ÞΔðpqrÞΔðpqrjmÞ
Sτm

× IYM
n ðαÞ; ð29Þ

where the upper index “YM” in AnðαÞ is no longer
necessary.
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IV. A SIMPLE EXAMPLE

As a simple example, let us consider the four-point
amplitude A4ð1; 2; 3; 4Þ, with the gauge fixing ðpqrjmÞ ¼
ð123j4Þ and the reduced matrix ðΨΛ

4 Þ1313.
First, we focus on the configuration where the sets of

punctures ðσ1; σ2Þ and ðσ3; σ4Þ are on the upper and the
lower sheet of the curves, respectively,

�
y1 ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 − Λ2

q
; σ1

�
;

�
y2 ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ22 − Λ2

q
; σ2

�
;�

y3 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ23 − Λ2

q
; σ3

�
;

�
y4 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ24 − Λ2

q
; σ4

�
:

ð30Þ

Expanding all elements in A4ð1; 2; 3; 4Þ around Λ ¼ 0, we
obtain (to leading order)

PTτð1; 2; 3; 4Þj1;23;4 ¼
Λ2

22
1

ðσ12σ2P34
σP341

Þ
1

ðσP123
σ34σ4P12

Þ ;

Δð123ÞΔð123j4Þ
Sτ4

����1;2
3;4

¼ 25

Λ4
ðσ12σ2P34

σP341
Þ2
�

1

P2
34

�

× ðσP123
σ34σ4P12

Þ2; ð31Þ

Y4
a¼1

ðyσÞa
ya

× T13Pf½ðΨΛ
4 Þ1313�j1;23;4 ¼ −

Λ2

22

X
M

ð−1Þ
σP341

× Pf

2
666666664

0 −α ϵM
34
· k2

σP342
−α ϵ1 · k2

σ12
−C22

α
ϵM
34
· k2

σP342
0

ϵM
34
· ϵ1

σP341

ϵM
34
· ϵ2

σP342

α ϵ1 · k2
σ12

ϵ1 · ϵM34
σ1P34

0 ϵ1 · ϵ2
σ12

C22
ϵ2 · ϵM34
σ2P34

ϵ2 · ϵ1
σ21

0

3
777777775

×
ð−1Þ
σP123

× Pf

2
666666664

0 −α ϵM
12
· k4

σP124
−α ϵ3 · k4

σ34
−C44

α
ϵM
12
· k4

σP124
0

ϵM
12
· ϵ3

σP123

ϵM
12
· ϵ4

σP124

α ϵ3 · k4
σ34

ϵ3 · ϵM12
σ3P12

0 ϵ3 · ϵ4
σ34

C44
ϵ4 · ϵM12
σ4P12

ϵ4 · ϵ3
σ43

0

3
777777775

¼ −
Λ2

22

X
M

ð−1Þ
σP341

Pf½ðΨ3ÞP341
P341

� × ð−1Þ
σP123

Pf½ðΨ3ÞP123
P123

�; ð32Þ

where we have introduced the notation Pij ≡ ki þ kj
and the new fixed punctures σP34

¼ σP12
¼ 0. The C22

and C44 factors are given by the usual expressions [15]
C22 ¼ −α ϵ2 · k1

σ21
− α ϵ2 ·P34

σ2P34
, C44 ¼ −α ϵ4 · k3

σ43
− α ϵ4 ·P12

σ4P12
, and the

equality in (32) is obtained under the completeness
relationship X

M

ϵMμ
i ϵMν

j ¼ ημν: ð33Þ

Therefore, the labels sets f1; 2g and f3; 4g have been
separated.
From the measure dμΛ4 ¼ 1

22
dΛ
Λ , we compute the Λ

integral, and the amplitude becomes

A4ð1; 2; 3; 4Þj1;23;4 ¼
1

2

X
M

A3ðPϵM
34 ; 1; 2Þ × A3ðPϵM

12 ; 3; 4Þ
P2
12

;

ð34Þ
where on the right-hand side the factorized object is
given by amplitudes with one leg off shell, as indicated.
The overall factor 1=2 cancels out after summing over
mirrored configurations, i.e.,

A4ð1; 2; 3; 4Þj1;23;4 þ A4ð1; 2; 3; 4Þj3;41;2

¼
X
M

A3ðPϵM
34 ; 1; 2Þ × A3ðPϵM

12 ; 3; 4Þ
P2
12

: ð35Þ

In a similar way, the factorization expansion
A4ð1; 2; 3; 4Þj4;12;3 becomes

A4ð1; 2; 3; 4Þj4;12;3 þ A4ð1; 2; 3; 4Þj2;34;1

¼
X
M

A3ðPϵM
41 ; 2; 3Þ × A3ðPϵM

23 ; 4; 1Þ
P2
23

: ð36Þ

Notice that after starting with the double-cover reduced
matrix, ðΨΛ

4 Þijij ¼ ðΨΛ
4 Þ1313, the resulting subamplitudes in

(35) and (36) have as reduced matrices the ones obtained
by removing the rows or columns,

fi; jg ¼ foff-shell punctureg ∪ ðfall puncturesg ∩ f1; 3gÞ;
ð37Þ

as can be seen in (32).
Finally, besides the two physical factorization expansions

around Λ ¼ 0 achieved previously, from the double-cover
approach arises a spurious channel given byA4ð1; 2; 3; 4Þj1;32;4,
up to its mirrored configuration. At leading order, this
configuration is expanded as

PTτð1; 2; 3; 4Þj1;32;4 ¼
Λ4

24
1

ðσ21P24
σ23P24

Þ
1

ðσ22P13
σ24P13

Þ ;

Δð123ÞΔð123j4Þ
Sτ4

����1;3
2;4

¼ 25

Λ4
ðσ13σ3P24

σP241
Þ2

×

�
1

P2
13

�
ðσP132

σ24σ4P13
Þ2; ð38Þ
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Y4
a¼1

ðyσÞa
ya

T13Pf½ðΨΛ
4 Þ1313�j1;32;4

¼ −
α2P2

13

2

ðϵ1 · ϵ3Þðϵ2 · ϵ4Þ
σ213σ

2
24

¼ ðσ1P24
σ3P24

Þðσ2P13
σ4P13

Þ
σ13σ24

× 2

8>>>>>>>><
>>>>>>>>:

X
L

ð−1Þ
σP241

×Pf

2
666666664

0 −α ϵL
24
·k3

σP243
−α ϵ1 ·k3

σ13
−C33

α
ϵL
24
·k3

σP243
0

ϵL
24
· ϵ1

σP241

ϵL
24
·ϵ3

σP243

α ϵ1 ·k3
σ13

ϵ1 ·ϵL24
σ1P24

0 ϵ1 · ϵ3
σ13

C33
ϵ3 ·ϵL24
σ3P24

ϵ3 ·ϵ1
σ31

0

3
777777775

×
ð−1Þ
σP132

×Pf

2
666666664

0 −α ϵL
13
·k4

σP134
−α ϵ2 ·k4

σ24
−C44

α
ϵL
13
·k4

σP134
0

ϵL
13
· ϵ2

σP132

ϵL
13
· ϵ4

σP134

α ϵ2 ·k4
σ24

ϵ2 · ϵL13
σ2P13

0 ϵ2 ·ϵ4
σ24

C44
ϵ4 · ϵL13
σ4P13

ϵ4 · ϵ2
σ42

0

3
777777775

9>>>>>>>>=
>>>>>>>>;

¼ ðσ1P24
σ3P24

Þðσ2P13
σ4P13

Þ
σ13σ24

2×
X
L

ð−1Þ
σP241

Pf½ðΨ3ÞP241
P241

�

×
ð−1Þ
σP132

Pf½ðΨ3ÞP132
P132

�; ð39Þ

with σP13
¼ σP24

¼ 0, and
P

L means a sum over longi-
tudinal degree of freedoms, namely,

X
L

ϵLμi ϵLνj ¼ Pμ
i P

ν
j

Pi · Pj
: ð40Þ

Considering the above expansionsweare able to integrate the
measure dμΛ4 ¼ 1

22
dΛ
Λ , so it is straightforward to see that

A4ð1; 2; 3; 4Þj1;32;4 þ A4ð1; 2; 3; 4Þj1;32;4

¼ −2 ×
X

L

A3ðPϵL
34; 1; 2Þ × A3ðPϵL

12; 3; 4Þ
P2
12

����
2↔3

: ð41Þ

Therefore, the double-cover approach gives us the four-point
factorization relation

A4ð1;2;3;4Þ ¼
X
M

A3ðPϵM
41 ;2;3Þ×A3ðPϵM

23 ;4;1Þ
P2
23

þ
X
M

A3ðPϵM
34 ;1;2Þ×A3ðPϵM

12 ;3;4Þ
P2
12

−2×
X

L

A3ðPϵL
34;1;2Þ×A3ðPϵL

12;3;4Þ
P2
12

����
2↔3

;

ð42Þ

where the subamplitudes are given in the single-cover
approach with reduced matrices satisfying Eq. (37).

V. A NEW RELATION FOR YANG-MILLS
AMPLITUDES

We now generalize the new factorization realization
obtained from double-cover formalism in the previous
section. As will be shown in great detail elsewhere [14],
by integrating the double-cover representation of an
ordered Yang-Mills amplitude, one is led to the following
general formula which factorizes arbitrary n-point Yang-
Mills amplitudes into a product of (single-cover) CHY
representations of lower-point amplitudes:

Anð1;…; nÞ ¼
X
ϵM

A3ðPϵM
4∶1; 2; 3Þ × An−1ðPϵM

2∶3; 4;…; n; 1Þ
P2
23

þ
Xn
i¼4

	X
ϵM

An−iþ3ðPϵM
3∶i; iþ 1;…1; 2ÞAi−1ðPϵM

iþ1∶2; 3;…; iÞ
P2
iþ1∶2

− 2
X

ϵL

An−iþ3ðPϵL
3∶i; iþ 1;…1; 2ÞAi−1ðPϵL

iþ1∶2; 3;…; iÞ
P2
iþ1∶2

����
2↔3



: ð43Þ

To be clear, this factorized form of Yang-Mills amplitudes
is a conjecture. What the double-cover formalism produces
directly are the first two terms plus contributions that come
from linking amplitudes together with scalar degrees of
freedom. Miraculously, it appears that these scalar con-
tributions can be exactly represented by gluing two Yang-
Mills amplitudes together with longitudinal polarizations
only. The technical details of how these manipulations arise
will be presented elsewhere [14]. Needless to say, in the

factorized form on the right-hand side, the two amplitudes
each have one external leg off shell (although still dressed
with the corresponding unphysical polarization vector).
Gluing these two amplitudes together proceeds through the
polarization sums as described in Eqs. (33) and (40). It
should also be stressed that the above expression comes
from the double-cover formalism with Mobius and scale-
invariance gauge choices ðpqrjmÞ ¼ ð123j4Þ and reduced
matrix ðΨΛ

n Þ1313.
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This is important to remark since the above factorization
is a gauge-fixing-dependent expression. Of course, the final
result, the left-hand side, is the correct full n-point ampli-
tude, but the precise factorized form on the right-hand side
depends on that generalized gauge fixing. The three punc-
tureswhichmust be fixed in the smaller off-shell Yang-Mills
amplitudes are given by the set ffixed puncturesg ¼
ðfall puncturesg ∩ f1; 2; 3; 4gÞ ∪ foff-shell punctureg,
and their reduced matrices are obtained by removing
the rows or columns under the rule given in (37). We
denote sums of cyclically consecutive external momenta

(modulo the total number of external momenta) by
Pi∶j ≡ ki þ kiþ1 þ � � � þ kj−1 þ kj. For expressions with
only two momenta involved (not necessarily consecutive),
we use the shorthand notation Pij ≡ ki þ kj.
We have denoted the polarization degrees of freedom

by ϵM and the longitudinal ones by ϵL. Using the simple
identity

P
Mϵ

Mμ
i ϵMν

j ¼ P
Tϵ

Tμ
i ϵTνj þ P

Lϵ
Lμ
i ϵLνj , whereP

Tϵ
Tμ
i ϵTνj ¼ ημν −

Pμ
i P

ν
j

Pi · Pj
, we can rewrite (43) in terms of

transverse (T) and longitudinal (L) polarization vectors,

Anð1;…;nÞ¼
X
ϵT

A3ðPϵT
4∶1;2;3ÞAn−1ðPϵT

2∶3;4;…;n;1Þ
P2
23

þ
Xn
i¼4;ϵT

An−iþ3ðPϵT
3∶i;iþ1;…1;2ÞAi−1ðPϵT

iþ1∶2;3;…;iÞ
P2
iþ1∶2

−2
Xn
i¼4;ϵL

An−iþ3ðPϵL
3∶i;iþ1;…1;2ÞAi−1ðPϵL

iþ1∶2;3;…;iÞ
P2
iþ1∶2

����
2↔3

þ
Xn
i¼4;ϵL

An−iþ3ðPϵL
3∶i;iþ1;…1;2ÞAi−1ðPϵL

iþ1∶2;3;…;iÞ
P2
iþ1∶2

þ
X
ϵL

A3ðPϵL
4∶1;2;3ÞAn−1ðPϵL

2∶3;4;…;n;1Þ
P2
23

: ð44Þ

Notice that the poles related to the longitudinal polarization contributions are not physical, and indeed these
unphysical poles are canceled by corresponding numerator factors. This is the way local four-point Yang-Mills
interactions appear in this formalism.

A. Feynman diagrams and Bern-Carrasco-Johansson (BCJ) numerators

We first consider how the double-cover representation relates to BCJ numerator identities [16]. From the formula (44),
we arrive at

A4ð1;2;3;4Þ ¼
X
ϵT

A3ðPϵT
12;3;4Þ×A3ðPϵT

34;1;2Þ
P2
12

þ
X
ϵT

A3ðPϵT
23;4;1Þ×A3ðPϵT

41;2;3Þ
P2
41

− 2
X
ϵL

	
A3ðPϵL

12;3;4Þ×A3ðPϵL
34;1;2Þ

P2
12

����
2↔3

−
A3ðPϵL

12;3;4Þ×A3ðPϵL
34;1;2Þ

2P2
12

−
A3ðP23

ϵL ;4;1Þ×A3ðPϵL
41;2;3Þ

2P2
41



:

ð45Þ

It is simple to check that in the normalization convention
α ¼ ffiffiffi

2
p

(corresponding to [12]), the first and second lines
are just the conventionally normalized Feynman diagrams

and and the remainder represents the quartic

vertex, namely . Finally, to obtain the BCJ numerators,

we reorganize (45) in the following way:

A4ð1; 2; 3; 4Þ ¼
ns

P2
12

þ nt

P2
41

; with

ns¼
X
T

A3ðPϵT
12;3;4Þ×A3ðPϵT

34;1;2Þ

þ
X
L

P2
12

	
−
A3ðPϵL

12;3;4Þ×A3ðPϵL
34;1;2Þ

P2
12

����
2↔3

þAð1Þ
3 ðPϵL

23;4;1Þ×Að3Þ
3 ðPϵL

41;2;3Þ
P2
41



; ð46Þ

nt ¼
X
T

A3ðPϵT
23;4;1Þ×A3ðPϵT

41;2;3Þ

þ
X
L

P2
14

	
−
A3ðPϵL

12;3;4Þ×A3ðPϵL
34;1;2Þ

P2
12

����
2↔3

þAð3Þ
3 ðPϵL

12;3;4Þ×Að1Þ
3 ðPϵL

34;1;2Þ
P2
12



: ð47Þ

Using the above equation, it is simple to check that we
have ns − nt ¼ nu, where nu can be obtained from ns
under the permutation ð1; 2; 3; 4Þ → ð1; 3; 2; 4Þ. Extending
such ideas to a higher number of points should be a
possible avenue and would be very interesting.

B. BCFW recursion

It is interesting to compare the factorizations above with
what one would obtain based on Britto-Cachazo-Feng-
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Witten (BCFW) recursion [17]. To illustrate this, consider
the five-point amplitude A5ð1; 2; 3; 4; 5Þ and introduce the
momentum deformation

kμ2ðzÞ ¼ kμ2 þ zqμ; kμ3ðzÞ ¼ kμ3 − zqμ; z ∈ C;

ð48Þ

where qμ satisfies k2 · q ¼ k3 · q ¼ q · q ¼ 0 and
q · q̄ ¼ 1. Additionally, the polarization vectors fϵ2; ϵ3g
must be deformed in order to keep the transversality,
so we consider ϵþ2 ðzÞ ¼ q̄ − z k3

k2 · k3
and ϵþ3 ðzÞ ¼ q; another

option is ϵ−2 ðzÞ ¼ q and ϵ−3 ðzÞ ¼ q̄þ z k2
k2 · k3

. Since we
have momentum conservation for deformed momenta
k1 þ k2ðzÞ þ k3ðzÞ þ k4 þ k5 ¼ 0 and the on-shell condi-
tion k22ðzÞ ¼ k23ðzÞ ¼ 0 and transversality remain valid, the
CHY approach is well defined. Thus, from (43) and using
Cauchy, one has

A5ð1;2;3;4;5Þ

¼−ResP2
34
ðzÞ¼0

	P
MA3ðPϵM

5∶2;3;4ÞðzÞ×A4ðPϵM
34 ;5;1;2ÞðzÞ

zP2
34ðzÞ




−ResP2
3∶5ðzÞ¼0

	P
MA3ðPϵM

3∶5;1;2ÞðzÞA4ðPϵM
12 ;3;4;5ÞðzÞ

zP3∶5ðzÞ



−Resz¼∞

	
A5ð1;2;3;4;5ÞðzÞ

z



:

Obviously, the pole P2
23 does not depend on z, so this

physical factorization channel only contributes at infinity.
The most interesting observation is that the spurious poles
P2
iþ1∶2ðzÞj2↔3 cancel out because the longitudinal contri-

butions
P

n
i¼4;ϵL

An−iþ3ðPϵL
3∶i; iþ 1;…; 1; 2Þ × Ai−1ðPϵL

iþ1∶2;
3; 4;…; iÞj2↔3 are proportional to them. Therefore, the
boundary contributions at z ¼ ∞ are related to the unphys-
ical poles that appear in the double cover, Eq. (43). This
gives these poles a special significance in the context
of BCFW recursion and potentially a new recursive path
for dealing with such contributions.

C. Berends-Giele recursion and the double cover

Another natural question that arises concerns the
similarity of the factorized forms from the double-cover
method and Berends-Giele recursion [18]. In order to shed
light on this, we focus on the bi-adjoint ϕ3 theory in the
double-cover formalism. Because of the trivial numerator
factors of this case, it is far simpler to analyze.
The connection is well illustrated by considering the

five-point amplitude. The factorizations from the double-
cover method lead to

Aϕ3ð1; 2; 3; 4; 5Þ ¼ Aϕ3

4 ðP12; 3; 4; 5Þ
P2
3∶5

þ Aϕ3

4 ð1; P23; 4; 5Þ
P2
4∶1

þ Aϕ3

4 ð1; 2; P34; 5Þ
P2
34

¼ 1

P2
3∶5

�
1

P2
5∶2 − P2

12

þ 1

P2
45

�

þ 1

P2
34

�
1

P2
51

þ 1

P2
3∶5 − P2

34

�

þ 1

P2
4∶1

�
1

P2
51

þ 1

P2
45

�
; ð49Þ

where we have chosen the gauge fixing ðpqrjmÞ ¼
ð123j4Þ. On the other hand, Berends-Giele recursion gives
(see, e.g., Ref. [19])

1

P2
2∶4

�
1

P2
34

þ 1

P2
23

�
þ 1

P2
12P

2
34

þ 1

P2
1∶3

�
1

P2
12

þ 1

P2
23

�
: ð50Þ

On the support, k1 þ k2 þ k3 þ k4 þ k5 ¼ 0, and under
the on-shell condition k2i ¼ 0, it is trivial to check that
the expressions obtained in (49) and (50) are identical.
However, the appearance of the unphysical poles in the
double-cover framework, ðP2

5∶2 − P2
12Þ−1 ¼ ðP2

34 − P2
3∶5Þ−1

and ðP2
3∶5 − P2

34Þ−1, makes it clear that the two representa-
tions are not directly equal. Interestingly, these unphysical
poles are related to the physical channel 1

P2
3∶5P

2
34

by use of the

partial fraction identity

1

P2
3∶5P

2
34

¼ 1

P2
3∶5ðP2

34 − P2
3∶5Þ

þ 1

P2
34ðP2

3∶5 − P2
34Þ

: ð51Þ

As it happens with the linear propagators at loop level
[8,20–22], the CHY formalism is naturally built of linear
propagators that can relate to the usual Feynman propa-
gators by means of partial fractioning.

VI. CONCLUSIONS

We have presented a new set of factorization identities
for Yang-Mills theory that naturally arise from a double-
cover version of the CHY formalism. These factorizations
glue amplitudes together in what can be interpreted as the
covariant Feynman gauge, with the additional four-point
contact interactions coming from an explicit sum over
longitudinal polarizations. The factorizations are at the
conjectured level, but there are many hints that they
may also be derivable from Berends-Giele recursions.
Although spurious poles appear, simple checks show that
they cancel through repeated use of partial fraction
identities. It would be an interesting extension of this
work to derive these relations directly from off-shell
recursion relations.
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Factorizations of amplitudes grow out of the double-
cover formalism precisely because it is “double”: There are,
figuratively speaking, two CHY integrals involved. The
bridge between these two CHY integrals is an off-shell leg,
a propagator. In the double-cover formalism this off-shell
leg stems from one scattering equation that is not imposed
as a delta-function constraint.
These factorizations of Yang-Mills amplitudes are

just a small part of more general relations that follow
when the double-cover formalism of CHY is analyzed for
the known set of theories that can be represented in this

form. Details will be provided by one of us in a subsequent
paper [14].
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