Cifuentes, J. & Arboleda, H. (2015). Identifying Competitive Intetaction of Patterns in Software Product Lines. Ingeninm, 9(24). 53-57

Identitying Competitive Interaction of
Patterns in Software Product Lines

Identificacién de la interaccion competitiva de patrones en lineas de producto software

COLCIENCIAS TIPO 4. ARTICULO CORTO

RECIBIDO: JUNIO 1, 2015; ACEPTADO: JUNIO 28, 2015

Julian Cifuentes
jacifuentes@jcesi.edu.co

Hugo Arboleda
hfarboleda@icesi.edu.co

Universidad Icesi, Cali-Colombia

Abstract

Enterprise design patterns (such as JEE patterns) can be used to promote Quality Attributes (QA) as functional features when
deriving products in an Enterprise Applications Software Product Line (SPL). One of the issues found in product derivation is the
interaction of code fragments generated by applying patterns. This interaction can be collaborative or competitive. When competitive,
relationships can be adaptable or excluding. In both cases, different approaches (e.g., pattern composition, pattern substitution,
constraint reasoning) can be used to address the problem. However, identifying and predicting these interactions eatly can be useful
to develop suitable strategies. In this work, we explore and identify competitive feature interactions using two base repositories: QAs
from a known standard and patterns from a catalogue. We show two cases of feature interaction, when promoting specific levels of
QAs in an Enterprise Application SPL.

Keywords
Software product lines; quality attributes; feature interaction.

Resumen

Los patrones de disefio de software pueden ser utilizados para la promocién de Atributos de Calidad (QA) como caracteristicas
funcionales durante la generaciéon de productos en una linea de productos de software (SPL) de aplicaciones empresariales. Uno de
los problemas que se presentan en la derivacién de productos es la interaccion de los fragmentos de cédigo derivados por los
patrones aplicados. Esta interaccion puede ser de naturaleza colaborativa o competitiva. Cuando es competitiva, las relaciones pueden
ser adaptables o excluyentes. En ambos casos es posible utilizar diferentes enfoques patra abordar el problema (e.g., composicién de
patrones, sustituciéon de patrones, razonamiento basado en restricciones). La identificacion y predicciéon temprana de estas
interacciones puede ser util para desarrollar estrategias adecuadas. En este trabajo, exploramos e identificamos interacciones
competitivas usando dos repositorios base: un estindar conocido de calidad que define Atributos de Calidad y un catdlogo de
patrones de disefio. Como resultado mostramos dos casos de interaccion cuando se promueven niveles especificos de QA en una
SPL de aplicaciones empresariales.

Palabras clave

Linea de productos de software; atributos de calidad; interaccion funcional.

Universidad Santiago de Cali / Facultad de Ingenieria — Facultad de Ciencias Bisicas |53

mailto:jacifuentes@icesi.edu.co
mailto:hfarboleda@icesi.edu.co

Cifuentes, J. & Arboleda, H. (2015).

I. INTRODUCTION

Software Product Line Engineering [SPLE] is an
expanding approach in software engineering, which aims at
developing a set of software systems that share common
features and satisfy the requirements of a specific domain
(Pohl, Bockle, & van der Linden, 2005). SPLE puts strong
emphasis on "re-use" organized through common software
architecture (Arboleda & Royer, 2012). A software product
line (SPL) is a family of related software products sharing a
common set of assets. Differences and commonalities
between products are typically described in terms of
features. Users can specify a product as a selection of
features that satisfies their functional requirements. With
many contemporary implementation mechanisms, it is
possible to automatically generate products based on
feature selections (Siegmund et al, 2013; Durin &
Atrboleda, 2014).

One of the challenges in today’s both traditional
software engineering and SPLE approaches is to deliver
high-quality software on time to customers and software
quality has become a major concern of software
organizations (Wieczorek & Meyerhoff, 2001). A lot of
research about Software quality has been done to refine
the concept of quality into a number of quality attributes
[QAs], also known as quality characteristics, quality factors
or non-functional requirements [NFRs] (Anderson, Bajaj,
& Gorr, 2002).

There are studies that deal with the existence and
influence of QAs on the analysis and design stages
(Mylldrniemi, Minnist6, & Raatikainen, 2006; Halmans &
Pohl, 2003) and explicitly consider QAs variations and
their relationships with functional features. Other works
like Duran y Arboleda (2014) and Hallsteinsen, Fegri, and
Syrstad, (2004), have explored how to promote quality
attributes as functional features using enterprise design
patterns.

Regarding the relationships between couples formed by
QAs and Design Patterns, these can be synergistic or
When
competitive, relationships are classified as adaptable or

competitive depending of its interaction.
exclusionary. Adaptable means that patterns can be
composed and adapted to achieve the required quality
scenarios. Exclusionary means that patterns cannot
coexist. Different approaches (e.g., pattern composition,
pattern substitution, constraint reasoning) can be applied

to resolve exclusionary relationships between design

54 | Universidad Santiago de Cali

patterns when the expected quality attributes they promote
are all required (Benavides, Trinidad, & Ruiz-Cortés, 2005;
Nhlabatsi, Laney & Nuseibeh, 2008). Identification of
competitive interactions at early stages of SPLE is an
essential issue because it helps to prevent subsequent
failures in products of the SPL (Laney & Nuseibeh, 2008).

In this paper we consider two repositories (one for
QAs and another for design patterns) and demonstrate
how these repositories can be helpful to define a
systematic way of classifying and identifying feature
interactions. Such interactions can be produced e.g., when
design patterns promote desired levels of QAs, previously
selected in a variability model attached to a SPL of
enterprise applications (Duran & Arboleda, 2014).

II. METHODOLOGY
A. Identifying Quality Attributes

Regarding the Quality Attributes, we have considered
the definition of Quality Attributes given in the ISO 25010
standard (2011), which describes a software product
quality model that categorizes software quality in eight
further subdivided
subcharacteristics and attributes (Figure 1). This model is a

characteristics which are into
comprehensive specification that provides a set of quality

characteristics and quality attributes that determine

functional features on the system.

B. Identifying Design Patterns

As a design patterns repository we worked with the
catalogue of Java EE Patterns defined in Adam Bien's
book (2012). As said in the section above, there are works
that have demonstrated how to promote functional
features determined by quality attributes using specific
design patterns. We have considered all of them along our
study. However, use of other catalogues has not been
discarded when needed.

C. Strategy

Our main goal is to perform an exploratory study that
leaves open possibilities for future work in which new
patterns and its interaction are implemented and analyzed.
In this work, we identified some cases of conflict
interaction between design patterns promoting functional
features. These patterns and features are determined by
QAs that have been selected by an SPL engineer from a
QA variability model.

Figure 1. Softwate Product Quality Model (ISO/IEC, 2011)

Identifying Competitive Interaction of Patterns in Software Product Lines. Ingeninm, 9(24). 53-57

Software
Product
Quality
Functional Performan- Compatibili- Maintainabi Transferabi-
Suitabili Reliability ce Operability Security i li
R4 efficiency R4 ty ty
Ap[_:rupnem::-’nleI 85 Modularity
m{gg?]';?i Illtl ¥ Confidentiality Reusability
A . Availability Time-behaviour ¥ Integrity Replaceability Analyzability Fartability
ppropriateness Faull tol . R Ease of use N udiat C Slenc Ch bilit Ad bilit
ACCLII'HUY ault lolerance es30urce- Helpfulness on-rep 1auon O-gxiIsience langes Ly H[XH iy
Compliance Recoverability utiisation Attractivencss Accountability Interoperability Modification Installability
-ompliance Compliance Compliance I;echm.ca]m Authenticity Compliance stability Compliance
i Comphance Testability
accesibility c '
Compliance ompliance

Even though the method to find the two cases has
been determined and mainly led by our criteria, we have
used the two repositories described above as a starting
point to correlate QAs and design patterns. For each QA
found in ISO 25010's quality model, we describe how it
can be promoted or affected by one or more design
patterns in Adam Bien's catalogue. In this catalogue, for
each specified pattern, there is a section called Consequences
that which QAs are affected by the

implementation of the pattern. Such consequences can be

describes

classified in order to detect patterns that could present
Our
however, has not been exhaustive and is limited to

potentially conflicting interactions. exploration,

obtaining the desired cases.

III. RESULTS

A. Case one

According to ISO 25010's software product quality
model (Figure 1), the quality attribute Performance is
specialized into Time Behaviour, Resource Utilization and
Performance Efficiency Compliance. We have selected the
first one (Time Behaviour), which determines #he degree o
which the software product provides appropriate response and

processing times and throughput rates when performing its function,
under stated conditions. Under the same standard, the quality
attribute Reliability is specialized into 4 attributes
(Availability, Fault Tolerance, Recoverability and Reliability
Compliance). We have considered Availability, which
determines he degree to which a software component is operational
and available when required for nse ISO/IEC, 2011).

Different levels for these attributes (e.g., Norwal,
Medium, High) can be promoted using specific design
patterns, as presented by Duran y Arboleda (2014). For
example, a medium level of Time Behaviour can be
promoted by the Fast Lane Reader (FLR) pattern, which
provides an efficient way to access large amount of read-
only data. Likewise, a wedium level of Availability could be
promoted using a spare computing pattern, which can replace
a failed component to achieve a degraded operational level
when one server is unavailable. So then, the first pattern
(FLR) promotes read-only access to the database, and
requires a cache to avoid reprocesses for similar requests
to the database. The second pattern, on the other hand,
promotes the use of persistent storage to maintain
application state and avoid the use of memory, meaning
that caches are not allowed. Table 1 summarizes this case.

Table 1. Case one results

Characteristic Subcharacteristic Level Promoting pattern Pattern interaction
Performance efficiency Time Behaviour Medium FLR Cache required vs. cache not allowed.
Security Availability Medium Spare computing

Facultad de Ingenierfa — Facultad de Ciencias Basicas |55

Cifuentes, J. & Arboleda, H. (2015).

B. Case two

As in Case 1, we have selected Time Behaviour from
Performance as defined in ISO 25010's software product
quality model. We have also considered Confidentiality,
(Figure 1) from the characteristic Security that is
specialized into six sub characteristics (Confidentiality,
Integrity, Non-repudiation, Accountability, Authenticity
and Security Compliance). According to ISO 25010,
confidentiality determines the degree to which the software
product provides protection from unanthorized disclosure of data or

information, whether accidental or deliberate.

Again, different levels for those attributes (e.g., Normal,
Medium, High, Encrypted, and Unencrypted) can be promoted

using specific design patterns. For example, a high level of
Time Behaviour can be promoted by the Fast Lane Reader
(FLR) pattern adding a Paginator strategy, which states that
an entire result set can be divided into smaller chunks.
Furthermore, Encrypted level of Confidentiality can be
addressed using a Password Based Encryption (PBE)
strategy based on the Java Security API (Oracle, 2014).

The first pattern has impact in some CRUD operations
(e.g., retrieve, listRecords). The second pattern has also
CRUD

information that has to be unencrypted before sending it

impact in operations, including retrieval

to a final user or GUI Hence, a strategy or solution for
enabling both levels must be developed. Table 2

summarizes this case.

Table 2. Case two results

Characteristic Subcharacteristic Level

Promoting pattern Pattern interaction

Performance efficiency Time Behaviour
Security Confidentiality

High

FLR + Paginator
Encrypted PBE

CRUD vs. CRUD with encrypted data

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have presented two cases of feature
interaction caused by implementation of design patterns
that promote specific levels of QAs in an Enterprise
Applications SPL. We have taken advantage of the
software product quality model described in ISO 25010 as
a repository of QAs, and the catalogue of design patterns
outlined by Adam Bien in his book of JEE patterns. This
study is a concrete contribution that leaves open the
possibility for future works in which additional interactions
between new patterns can be analyzed. The highest-level
goal is to identify general strategies that resolve exclusive
interactions between design patterns when promoting
desired quality attributes. This mechanism will be used to
extend the quality model and the tool proposed by Duran
y Arboleda (2014) in order to provide a mechanism to
handle these situations during the derivation of products
from a configuration of selected quality attributes. Among
the possible solution scenarios we have considered to
evaluate the following alternatives: using a new design
pattern that integrates two or more QAs which individual
promoting patterns are exclusionary; to delegate and
compose a design pattern starting from another, to
recursively include the desired QAs; and define the
problem as constraint-based reasoning where the variables
are the desired levels of QAs and the constraints are the
dependency relationships between them.

56 | Universidad Santiago de Cali

V. REFERENCES

Anderson, B.B., Bajaj, A., & Gorr, W. (2002). An estimation of the
decision models of senior IS managers when evaluating the
external quality of organizational software. The Journal of
Systems and Software, 61(1), 59-75.

Arboleda, H. & Royer, J-C. (2012). Model-Driven and Software
Product Line Engineering. ISTE / John Wyley & Sons.

Benavides, D., Trinidad, P., & Ruiz-Cortés, A. (2005). Automated
reasoning on feature models. In Advanced Information Systems
Engineering - Lecture Notes in Computer Science, 3520, 491-503

Bien, A. (2012). Real World Java EE Patterns Rethinking Best
Practices. Raleigh, NC: lulu.com.

Duran, D. & Arboleda, H. (2914). Quality-driven software product
lines [Master’s thesis]. Universidad Icesi: Cali, Colombia, 2014.
Available:
http://bibliotecadigital.icesi.edu.co/biblioteca_digital/handle/1090
6/7749

Hallsteinsen, S., Feegri, T.E., & Syrstad, M. (2004). Patterns in
product family architecture design. In F.J. van der Linden [Ed.],
Software Product Family Engineering - Lecture Notes in
Computer Science, 3014, 261-268. Berlin-Heidelberg: Springer.

Halmans, G. & Pohl, K. (2003). Communicating the variability of a
software-product family to customers. Journal on Software and
Systems Modeling, 2(1), 15-36.

International Organization for Standardization / International
Electrotechnical Commission [ISO/IEC]. (2011). ISO/IEC 25010:
Software engineering — Software product Quality Requirements
and Evaluation (SQuaRE) — Software and quality in use models.
Geneva, Switzerland: ISO/IEC.

Myllarniemi, V., Méannistd, T. & Raatikainen, M. (2006). Quality

http://link.springer.com/book/10.1007/b136788
http://link.springer.com/book/10.1007/b136788
http://link.springer.com/bookseries/558
http://bibliotecadigital.icesi.edu.co/biblioteca_digital/handle/10906/7749
http://bibliotecadigital.icesi.edu.co/biblioteca_digital/handle/10906/7749
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://www.iso.org/

Identifying Competitive Interaction of Patterns in Software Product Lines. Ingeninm, 9(24). 53-57

Attribute Variability within a Software Product Family
Architecture. Second International Conference on Quality of
Software Architecture QoSA, 2006. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?d0i=10.1.1.97.6690
&rep=repl&type=pdf

Nhlabatsi, A., Laney, R., & Nuseibeh, B. (2008). Feature interaction:
The security threat from within software systems. Prog.
Informatics, 5, 75-90.

Oracle. (2014). Java Security API. [Online]. Available:
http://docs.oracle.com/javase/7/docs/api/java/security/package-
summary.html

Pohl, K., Béckle, G., & van der Linden, F. (2005). Software Product
Line Engineering: Foundations, Principles, and Techniques.
Berlin, Germany: Springer.

Siegmund, N., Rosenmiiller, M., Kastner, C., Giarrusso, P.G., Apel,
S., & Kolesnikov, S.S. (2013). Scalable prediction of non-
functional properties in software product lines: Footprint and
memory consumption. Inf. Softw. Technol., 55(3), 491-507.

Wieczorek, M & Meyerhoff, D. (2001). Software quality: State of the
art in management, testing, and tools. Berlin, Germany: Springer.

CURRICULUM

Julian Cifuentes. Ingeniero de Sistemas de la Universidad del
Valle, con mas de 10 afios de experiencia como analista,
desarrollador y consultor en proyectos de implantacion de
sistemas de software llevados a caboen los sectores
de comercio electrénico, telecomunicaciones y servicios
domiciliarios (Open International Systems, Empresas
Municipales de Cali [Emcali], Empresas Publicas de
Medellin [EPM], Cablevisiéon Argentina, Carvajal S.A). Su
experiencia como consultor independiente lo ha
llevado liderar y apoyar procesos de integracién (Optima,
Gases de Occidente), migracion (Optima, Distromel),
pruebas de software (GreenSQA, Emcali, Gases de
Occidente, Banco de Occidente) e interventoria (Wasser
Colombia, Emcali). Actualmente es investigador y docente,
y cursa la Maestria en Informatica y Telecomunicaciones

en la Universidad Icesi.

Hugo Arboleda. Doctor en Informatica de la Fcole des
Mines de Nantes, Francia. Tiene un Doctorado en
Ingenierfa de la Universidad de Los Andes, una Maestria
en Sistemas y Computacion de la misma universidad y es
Ingeniero de Sistemas de la Universidad del Valle.
Consultor de empresas nacionales como Coomeva,
Carvajal y Promédico en temas de adquisicion estratégica
de recursos de TI, gerencia de proyectos e ingenieria de
software. Parte de su desarrollo profesional lo llevé a cabo
en empresas

como Open International Systems vy

Heinsohn Business Technology. Autor de mas de 30

publicaciones entre libros, articulos de revista y ponencias
auditadas nacional e internacionalmente. Ha sido profesor
en el Master EHuropeo de Desarrollo de Software
Orientado por Objetos y Componentes ofrecido por la
Fcole des Mines de Nantes (Francia) y Vrije Universiteit
Brussel (Bélgica). Fue profesor de la Universidad de Los
Andes y de la Universidad Politécnico Gran Colombiano
en Bogota, y de la Universidad de San Buenaventura en
Cali. Actualmente dirige la Maestria en Gestion de
Informatica y Telecomunicaciones de la Universidad Icesi,

donde es profesor de tiempo completo.

Facultad de Ingenierfa — Facultad de Ciencias Basicas |57

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.6690&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.6690&rep=rep1&type=pdf
http://docs.oracle.com/javase/7/docs/api/java/security/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/security/package-summary.html

	Identificación de la interacción competitiva de patrones en líneas de producto software
	I. Introduction
	II. Methodology
	A. Identifying Quality Attributes
	B. Identifying Design Patterns
	C. Strategy

	III. Results
	A. Case one
	B. Case two

	IV. Conclusions and future work
	V. References
	Curriculum

