Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/20.500.12421/247
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLlamosi, Artémis-
dc.contributor.authorGonzález-Vargas, Andrés M.-
dc.contributor.authorVersari, Cristian-
dc.contributor.authorCinquemani, Eugenio-
dc.contributor.authorFerrari-Trecate, Giancarlo-
dc.contributor.authorHersen, Pascal-
dc.contributor.authorBatt, Grégory-
dc.date.accessioned2019-07-03T22:02:32Z-
dc.date.available2019-07-03T22:02:32Z-
dc.date.issued2016-02-09-
dc.identifier.issn1553734X-
dc.identifier.urihttps://repository.usc.edu.co/handle/20.500.12421/247-
dc.description.abstractSignificant cell-to-cell heterogeneity is ubiquitously observed in isogenic cell populations. Consequently, parameters of models of intracellular processes, usually fitted to population-averaged data, should rather be fitted to individual cells to obtain a population of models of similar but non-identical individuals. Here, we propose a quantitative modeling framework that attributes specific parameter values to single cells for a standard model of gene expression. We combine high quality single-cell measurements of the response of yeast cells to repeated hyperosmotic shocks and state-of-the-art statistical inference approaches for mixed-effects models to infer multidimensional parameter distributions describing the population, and then derive specific parameters for individual cells. The analysis of single-cell parameters shows that single-cell identity (e.g. gene expression dynamics, cell size, growth rate, mother-daughter relationships) is, at least partially, captured by the parameter values of gene expression models (e.g. rates of transcription, translation and degradation). Our approach shows how to use the rich information contained into longitudinal single-cell data to infer parameters that can faithfully represent single-cell identity. © 2016 Llamosi et al.en_US
dc.language.isoenen_US
dc.publisherPublic Library of Scienceen_US
dc.subjectComputational Biologyen_US
dc.subjectGene Expressionen_US
dc.subjectMicrofluidic Analytical Techniquesen_US
dc.subjectModels, Biologicalen_US
dc.subjectSaccharomyces cerevisiaeen_US
dc.subjectSingle-Cell Analysisen_US
dc.titleWhat Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeasten_US
dc.typeArticleen_US
Appears in Collections:Artículos Científicos



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.