Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/20.500.12421/257
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGomez, Humberto-
dc.date.accessioned2019-07-03T22:13:14Z-
dc.date.available2019-07-03T22:13:14Z-
dc.date.issued2016-06-01-
dc.identifier.issn11266708-
dc.identifier.urihttps://repository.usc.edu.co/handle/20.500.12421/257-
dc.description.abstractAbstract: The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter Λ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting Λ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the Λ algorithm. © 2016, The Author(s).en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.subjectDifferential and Algebraic Geometryen_US
dc.subjectField Theories in Higher Dimensionsen_US
dc.subjectScattering Amplitudesen_US
dc.subjectSuperstrings and Heterotic Stringsen_US
dc.titleΛ scattering equationsen_US
dc.typeArticleen_US
Appears in Collections:Artículos Científicos

Files in This Item:
File Description SizeFormat 
-scattering-equationsJournal-of-High-Energy-Physics.pdf1.64 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.