Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/20.500.12421/2709
Title: Riccati–Ermakov systems and explicit solutions for variable coefficient reaction–diffusion equations
Authors: Pereira, Enrique
Suazo, Erwin
Trespalacios, Jessica
Keywords: Similarity transformations
Variable coefficient Burgers equation
Variable coefficient Fisher–KPP equation
Riccati–Ermakov systems of ODEs
Exact solutions
Multiparameters
Issue Date: 28-Feb-2018
Publisher: Elsevier Inc.
Abstract: We present several families of nonlinear reaction–diffusion equations with variable coefficients including generalizations of Fisher–KPP and Burgers type equations. Special exact solutions such as traveling wave, rational, triangular wave and N-wave type solutions are shown. By means of similarity transformations the variable coefficients are conditioned to satisfy Riccati or Ermakov systems of equations. When the Riccati system is used, conditions are established so that finite-time singularities might occur. We explore solution dynamics across multi-parameters. In the supplementary material, we provide a computer algebra verification of the solutions and exemplify nontrivial dynamics of the solutions.
URI: https://repository.usc.edu.co/handle/20.500.12421/2709
ISSN: 00963003
Appears in Collections:Artículos Científicos

Files in This Item:
File Description SizeFormat 
Riccati–Ermakov systems and explicit solutions for variable.jpg189.15 kBJPEGView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.