Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/20.500.12421/2786
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJastrzebska, Izabella-
dc.contributor.authorPawlak, Tomasz-
dc.contributor.authorArcos Ramos, Rafael-
dc.contributor.authorFlorez Lopez, Edwin-
dc.contributor.authorFarfán, Norberto-
dc.contributor.authorCzajkowska Szczykowska, Dorota-
dc.contributor.authorMaj, Jadwiga-
dc.contributor.authorSantillan, Rosa-
dc.contributor.authorMorzycki, Jacek W.-
dc.contributor.authorPotrzebowski, Marek J.-
dc.date.accessioned2020-02-14T20:12:05Z-
dc.date.available2020-02-14T20:12:05Z-
dc.date.issued2016-09-06-
dc.identifier.issn15287483-
dc.identifier.urihttps://repository.usc.edu.co/handle/20.500.12421/2786-
dc.description.abstractThe synthesis and solid-state characterization of a series of cyclic/acyclic molecular rotors derived from naturally occurring steroidal 12-oxosapogenins are described. The bridged molecular rotors with rigid steroidal frameworks were obtained by employing ring-closing metathesis (RCM) as a key step. The X-ray diffraction technique was employed for determination and refinement of the crystal and molecular structure of selected models giving good quality single crystals. In the case of the bridged hecogenin molecular rotor 11E for which poor quality crystals were obtained, an NMR crystallography approach was used for fine refinement of the structure. Solid state NMR spectroscopic techniques were applied for the study of local molecular dynamics of the featured acyclic/cyclic molecular rotors. Analysis of 13C principal components of chemical shift tensors and chemical shift anisotropy (CSA) as well as heteronuclear 1H–13C dipolar couplings (DC) unambiguously proved that aromatic rings located in the space within the rigid steroidal framework both for cyclic and acyclic rotors are under kHz exchange regime. Experimental results were confirmed by theoretical calculations of rotation barrier on the density functional theory level. Small distinctions in the values of CSA and DC for the rotors under investigation are explained on the basis of differences in their molecular structures.es
dc.language.isoenes
dc.publisherAmerican Chemical Societyes
dc.subjectChemical analysises
dc.subjectChemical shiftes
dc.subjectDensity functional theoryes
dc.subjectMolecular dynamicses
dc.subjectMolecular structurees
dc.subjectPrincipal component analysises
dc.subjectSingle crystalses
dc.subjectX ray diffractiones
dc.titleSynthesis, Structure, and Local Molecular Dynamics for Crystalline Rotors Based on Hecogenin/Botogenin Steroidal Frameworkses
dc.typeArticlees
Appears in Collections:Artículos Científicos

Files in This Item:
File Description SizeFormat 
Synthesis, Structure, and Local Molecular Dynamics.jpg125.74 kBJPEGView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.